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In Praise of Engineering a Compiler Second Edition

Compilers are a rich area of study, drawing together the whole world of computer science in
one, elegant construction. Cooper and Torczon have succeeded in creating a welcoming guide to
these software systems, enhancing this new edition with clear lessons and the details you simply
must get right, all the while keeping the big picture firmly in view. Engineering a Compiler is an
invaluable companion for anyone new to the subject.

Michael D. Smith
Dean of the Faculty of Arts and Sciences
John H. Finley, Jr. Professor of Engineering and Applied Sciences, Harvard University

The Second Edition of Engineering a Compiler is an excellent introduction to the construction
of modern optimizing compilers. The authors draw from a wealth of experience in compiler
construction in order to help students grasp the big picture while at the same time guiding
them through many important but subtle details that must be addressed to construct an effec-
tive optimizing compiler. In particular, this book contains the best introduction to Static Single
Assignment Form that I've seen.

Jeffery von Ronne

Assistant Professor

Department of Computer Science

The University of Texas at San Antonio

Engineering a Compiler increases its value as a textbook with a more regular and consistent
structure, and with a host of instructional aids: review questions, extra examples, sidebars, and
marginal notes. It also includes a wealth of technical updates, including more on nontraditional
languages, real-world compilers, and nontraditional uses of compiler technology. The optimi-
zation material—already a signature strength—has become even more accessible and clear.

Michael L. Scott

Professor

Computer Science Department

University of Rochester

Author of Programming Language Pragmatics

Keith Cooper and Linda Torczon present an effective treatment of the history as well as a
practitioner’s perspective of how compilers are developed. Theory as well as practical real
world examples of existing compilers (i.e. LISP, FORTRAN, etc.) comprise a multitude of effec-
tive discussions and illustrations. Full circle discussion of introductory along with advanced
“allocation” and “optimization” concepts encompass an effective “life-cycle” of compiler
engineering. This text should be on every bookshelf of computer science students as well as
professionals involved with compiler engineering and development.

David Orleans
Nova Southeastern University
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The cover of this book features a portion of the drawing, “The Landing of the Ark,” which
decorates the ceiling of Duncan Hall at Rice University. Both Duncan Hall and its ceiling were
designed by British architect John Outram. Duncan Hall is an outward expression of architec-
tural, decorative, and philosophical themes developed over Outram’s career as an architect. The
decorated ceiling of the ceremonial hall plays a central role in the building’s decorative scheme.
Outram inscribed the ceiling with a set of significant ideas—a creation myth. By expressing
those ideas in an allegorical drawing of vast size and intense color, Outram created a signpost
that tells visitors who wander into the hall that, indeed, this building is not like other buildings.

By using the same signpost on the cover of Engineering a Compiler, the authors intend to signal
that this work contains significant ideas that are at the core of their discipline. Like Outram’s
building, this volume is the culmination of intellectual themes developed over the authors’
professional careers. Like Outram’s decorative scheme, this book is a device for communicating
ideas. Like Outram’s ceiling, it presents significant ideas in new ways.

By connecting the design and construction of compilers with the design and construction of
buildings, we intend to convey the many similarities in these two distinct activities. Our many
long discussions with Outram introduced us to the Vitruvian ideals for architecture: commodity,
firmness, and delight. These ideals apply to many kinds of construction. Their analogs for com-
piler construction are consistent themes of this text: function, structure, and elegance. Function
matters; a compiler that generates incorrect code is useless. Structure matters; engineering detail
determines a compiler’s efficiency and robustness. Elegance matters; a well-designed compiler,
in which the algorithms and data structures flow smoothly from one pass to another, can be a
thing of beauty.

We are delighted to have John Outram’s work grace the cover of this book.

Duncan Hall’s ceiling is an interesting technological artifact. Outram drew the original design
on one sheet of paper. It was photographed and scanned at 1200 dpi yielding roughly 750 mB
of data. The image was enlarged to form 234 distinct 2 x 8 foot panels, creating a 52 x 72 foot
image. The panels were printed onto oversize sheets of perforated vinyl using a 12 dpi acrylic-
ink printer. These sheets were precision mounted onto 2 x 8 foot acoustic tiles and hung on the
vault’s aluminum frame.
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I
Preface to the Second Edition

The practice of compiler construction changes continually, in part because the designs of
processors and systems change. For example, when we began to write Engineering a Com-
piler (EAC) in 1998, some of our colleagues questioned the wisdom of including a chapter on
instruction scheduling because out-of-order execution threatened to make scheduling largely
irrelevant. Today, as the second edition goes to press, the rise of multicore processors and the
push for more cores has made in-order execution pipelines attractive again because their smaller
footprints allow the designer to place more cores on a chip. Instruction scheduling will remain
important for the near-term future.

At the same time, the compiler construction community continues to develop new insights and
algorithms, and to rediscover older techniques that were effective but largely forgotten. Recent
research has created excitement surrounding the use of chordal graphs in register allocation
(see Section 13.5.2). That work promises to simplify some aspects of graph-coloring allocators.
Brzozowski’s algorithm is a DFA minimization technique that dates to the early 1960s but has
not been taught in compiler courses for decades (see Section 2.6.2). It provides an easy path
from an implementation of the subset construction to one that minimizes DFAs. A modern course
in compiler construction might include both of these ideas.

How, then, are we to structure a curriculum in compiler construction so that it prepares students
to enter this ever changing field? We believe that the course should provide each student with
the set of base skills that they will need to build new compiler components and to modify
existing ones. Students need to understand both sweeping concepts, such as the collaboration
between the compiler, linker, loader, and operating system embodied in a linkage convention,
and minute detail, such as how the compiler writer might reduce the aggregate code space used
by the register-save code at each procedure call.

B CHANGES IN THE SECOND EDITION

The second edition of Engineering a Compiler (EAC2e) presents both perspectives: big-picture
views of the problems in compiler construction and detailed discussions of algorithmic alterna-
tives. In preparing EAC2e, we focused on the usability of the book, both as a textbook and as a
reference for professionals. Specifically, we

m Improved the flow of ideas to help the student who reads the book sequentially. Chapter
introductions explain the purpose of the chapter, lay out the major concepts, and provide a
high-level overview of the chapter’s subject matter. Examples have been reworked to
provide continuity across chapters. In addition, each chapter begins with a summary and a
set of keywords to aid the user who treats EAC2e as a reference book.

m Added section reviews and review questions at the end of each major section. The review
questions provide a quick check as to whether or not the reader has understood the major
points of the section.

Xix



XX  Preface to the Second Edition

m  Moved definitions of key terms into the margin adjacent to the paragraph where they are
first defined and discussed.

m  Revised the material on optimization extensively so that it provides broader coverage of
the possibilities for an optimizing compiler.

Compiler development today focuses on optimization and on code generation. A newly hired
compiler writer is far more likely to port a code generator to a new processor or modify an opti-
mization pass than to write a scanner or parser. The successful compiler writer must be familiar
with current best-practice techniques in optimization, such as the construction of static single-
assignment form, and in code generation, such as software pipelining. They must also have the
background and insight to understand new techniques as they appear during the coming years.
Finally, they must understand the techniques of scanning, parsing, and semantic elaboration
well enough to build or modify a front end.

Our goal for EAC2e has been to create a text and a course that exposes students to the critical
issues in modern compilers and provides them with the background to tackle those problems.
We have retained, from the first edition, the basic balance of material. Front ends are commodity
components; they can be purchased from a reliable vendor or adapted from one of the many
open-source systems. At the same time, optimizers and code generators are custom-crafted
for particular processors and, sometimes, for individual models, because performance relies so
heavily on specific low-level details of the generated code. These facts affect the way that we
build compilers today; they should also affect the way that we teach compiler construction.

H ORGANIZATION

EAC2e divides the material into four roughly equal pieces:

m  The first major section, Chapters 2 through 4, covers both the design of a compiler front
end and the design and construction of tools to build front ends.

m  The second major section, Chapters 5 through 7, explores the mapping of source-code into
the compiler’s intermediate form—that is, these chapters examine the kind of code that the
front end generates for the optimizer and back end.

m  The third major section, Chapters 8 through 10, introduces the subject of code
optimization. Chapter 8 provides an overview of optimization. Chapters 9 and 10 contain
deeper treatments of analysis and transformation; these two chapters are often omitted
from an undergraduate course.

m  The final section, Chapters 11 through 13, focuses on algorithms used in the compiler’s
back end.

B THE ART AND SCIENCE OF COMPILATION

The lore of compiler construction includes both amazing success stories about the application of
theory to practice and humbling stories about the limits of what we can do. On the success side,
modern scanners are built by applying the theory of regular languages to automatic construction
of recognizers. LR parsers use the same techniques to perform the handle-recognition that drives



Preface to the Second Edition ~ XXi

a shift-reduce parser. Data-flow analysis applies lattice theory to the analysis of programs in
clever and useful ways. The approximation algorithms used in code generation produce good
solutions to many instances of truly hard problems.

On the other side, compiler construction exposes complex problems that defy good solutions.
The back end of a compiler for a modern processor approximates the solution to two or more
interacting Np-complete problems (instruction scheduling, register allocation, and, perhaps,
instruction and data placement). These NP-complete problems, however, look easy next to prob-
lems such as algebraic reassociation of expressions (see, for example, Figure 7.1). This problem
admits a huge number of solutions; to make matters worse, the desired solution depends on con-
text in both the compiler and the application code. As the compiler approximates the solutions
to such problems, it faces constraints on compile time and available memory. A good compiler
artfully blends theory, practical knowledge, engineering, and experience.

Open up a modern optimizing compiler and you will find a wide variety of techniques. Com-
pilers use greedy heuristic searches that explore large solution spaces and deterministic finite
automata that recognize words in the input. They employ fixed-point algorithms to reason
about program behavior and simple theorem provers and algebraic simplifiers to predict the
values of expressions. Compilers take advantage of fast pattern-matching algorithms to map
abstract computations to machine-level operations. They use linear diophantine equations
and Pressburger arithmetic to analyze array subscripts. Finally, compilers use a large set of
classic algorithms and data structures such as hash tables, graph algorithms, and sparse set
implementations.

In EAC2e, we have tried to convey both the art and the science of compiler construction. The
book includes a sufficiently broad selection of material to show the reader that real tradeoffs
exist and that the impact of design decisions can be both subtle and far-reaching. At the same
time, EAC2e omits some techniques that have long been part of an undergraduate compiler
construction course, but have been rendered less important by changes in the marketplace, in
the technology of languages and compilers, or in the availability of tools.

B APPROACH

Compiler construction is an exercise in engineering design. The compiler writer must choose
a path through a design space that is filled with diverse alternatives, each with distinct costs,
advantages, and complexity. Each decision has an impact on the resulting compiler. The quality
of the end product depends on informed decisions at each step along the way.

Thus, there is no single right answer for many of the design decisions in a compiler. Even
within “well understood” and “solved” problems, nuances in design and implementation have
an impact on both the behavior of the compiler and the quality of the code that it produces.
Many considerations play into each decision. As an example, the choice of an intermediate
representation for the compiler has a profound impact on the rest of the compiler, from time
and space requirements through the ease with which different algorithms can be applied. The
decision, however, is often given short shrift. Chapter 5 examines the space of intermediate
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representations and some of the issues that should be considered in selecting one. We raise the
issue again at several points in the book—both directly in the text and indirectly in the exercises.

EAC2e explores the design space and conveys both the depth of the problems and the breadth
of the possible solutions. It shows some ways that those problems have been solved, along with
the constraints that made those solutions attractive. Compiler writers need to understand both
the problems and their solutions, as well as the impact of those decisions on other facets of the
compiler’s design. Only then can they make informed and intelligent choices.

B PHILOSOPHY

This text exposes our philosophy for building compilers, developed during more than twenty-
five years each of research, teaching, and practice. For example, intermediate representations
should expose those details that matter in the final code; this belief leads to a bias toward
low-level representations. Values should reside in registers until the allocator discovers that
it cannot keep them there; this practice produces examples that use virtual registers and store
values to memory only when it cannot be avoided. Every compiler should include optimization;
it simplifies the rest of the compiler. Our experiences over the years have informed the selection
of material and its presentation.

H A WORD ABOUT PROGRAMMING EXERCISES

A class in compiler construction offers the opportunity to explore software design issues in
the context of a concrete application—one whose basic functions are well understood by any
student with the background for a compiler construction course. In most versions of this course,
the programming exercises play a large role.

We have taught this class in versions where the students build a simple compiler from start to
finish—beginning with a generated scanner and parser and ending with a code generator for
some simplified RISC instruction set. We have taught this class in versions where the students
write programs that address well-contained individual problems, such as register allocation or
instruction scheduling. The choice of programming exercises depends heavily on the role that
the course plays in the surrounding curriculum.

In some schools, the compiler course serves as a capstone course for seniors, tying together
concepts from many other courses in a large, practical, design and implementation project.
Students in such a class might write a complete compiler for a simple language or modify an
open-source compiler to add support for a new language feature or a new architectural feature.
This class might present the material in a linear order that closely follows the text’s organization.

In other schools, that capstone experience occurs in other courses or in other ways. In such
a class, the teacher might focus the programming exercises more narrowly on algorithms and
their implementation, using labs such as a local register allocator or a tree-height rebalancing
pass. This course might skip around in the text and adjust the order of presentation to meet the
needs of the labs. For example, at Rice, we have often used a simple local register allocator
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as the first lab; any student with assembly-language programming experience understands the
basics of the problem. That strategy, however, exposes the students to material from Chapter 13
before they see Chapter 2.

In either scenario, the course should draw material from other classes. Obvious connections
exist to computer organization, assembly-language programming, operating systems, computer
architecture, algorithms, and formal languages. Although the connections from compiler con-
struction to other courses may be less obvious, they are no less important. Character copying,
as discussed in Chapter 7, plays a critical role in the performance of applications that include
network protocols, file servers, and web servers. The techniques developed in Chapter 2 for
scanning have applications that range from text editing through UrL-filtering. The bottom-
up local register allocator in Chapter 13 is a cousin of the optimal offline page replacement
algorithm, MIN.

H ADDITIONAL MATERIALS

Additional resources are available that can help you adapt the material presented in EAC2e to
your course. These include a complete set of lectures from the authors’ version of the course at
Rice University and a set of solutions to the exercises. Your Elsevier representative can provide
you with access.
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Chapter

Overview of Compilation

B CHAPTER OVERVIEW

Compilers are computer programs that translate a program written in one
language into a program written in another language. At the same time, a
compiler is a large software system, with many internal components and
algorithms and complex interactions between them. Thus, the study of com-
piler construction is an introduction to techniques for the translation and
improvement of programs, and a practical exercise in software engineering.
This chapter provides a conceptual overview of all the major components of
a modern compiler.

Keywords: Compiler, Interpreter, Automatic Translation

1.1 INTRODUCTION

The role of the computer in daily life grows each year. With the rise of the
Internet, computers and the software that runs on them provide communica-
tions, news, entertainment, and security. Embedded computers have changed
the ways that we build automobiles, airplanes, telephones, televisions, and
radios. Computation has created entirely new categories of activity, from
video games to social networks. Supercomputers predict daily weather and
the course of violent storms. Embedded computers synchronize traffic lights
and deliver e-mail to your pocket.

All of these computer applications rely on software computer programs

that build virtual tools on top of the low-level abstractions provided by the

underlying hardware. Almost all of that software is translated by a tool

called a compiler. A compiler is simply a computer program that trans-  Compiler

lates other computer programs to prepare them for execution. This book  acomputer program that translates other
presents the fundamental techniques of automatic translation that are used ~ COMPuter programs

Engineering a Compiler. DOI: 10.1016/B978-0-12-088478-0.00001-3
Copyright © 2012, Elsevier Inc. All rights reserved. 1
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to build compilers. It describes many of the challenges that arise in compiler
construction and the algorithms that compiler writers use to address them.

Conceptual Roadmap

A compiler is a tool that translates software written in one language into
another language. To translate text from one language to another, the tool
must understand both the form, or syntax, and content, or meaning, of the
input language. It needs to understand the rules that govern syntax and mean-
ing in the output language. Finally, it needs a scheme for mapping content
from the source language to the target language.

The structure of a typical compiler derives from these simple observations.
The compiler has a front end to deal with the source language. It has a back
end to deal with the target language. Connecting the front end and the back
end, it has a formal structure for representing the program in an interme-
diate form whose meaning is largely independent of either language. To
improve the translation, a compiler often includes an optimizer that analyzes
and rewrites that intermediate form.

Overview

Computer programs are simply sequences of abstract operations written in
a programming language—a formal language designed for expressing com-
putation. Programming languages have rigid properties and meanings—as
opposed to natural languages, such as Chinese or Portuguese. Programming
languages are designed for expressiveness, conciseness, and clarity. Natural
languages allow ambiguity. Programming languages are designed to avoid
ambiguity; an ambiguous program has no meaning. Programming languages
are designed to specify computations—to record the sequence of actions that
perform some task or produce some results.

Programming languages are, in general, designed to allow humans to express
computations as sequences of operations. Computer processors, hereafter
referred to as processors, microprocessors, or machines, are designed to exe-
cute sequences of operations. The operations that a processor implements
are, for the most part, at a much lower level of abstraction than those speci-
fied in a programming language. For example, a programming language typ-
ically includes a concise way to print some number to a file. That single
programming language statement must be translated into literally hundreds
of machine operations before it can execute.

The tool that performs such translations is called a compiler. The compiler
takes as input a program written in some language and produces as its out-
put an equivalent program. In the classic notion of a compiler, the output



program is expressed in the operations available on some specific processor,
often called the target machine. Viewed as a black box, a compiler might
look like this:

Source . Target
Compiler |———
Program Program

Typical “source” languages might be C, C++, FORTRAN, Java, or ML. The
“target” language is usually the instruction set of some processor.

Some compilers produce a target program written in a human-oriented pro-
gramming language rather than the assembly language of some computer.
The programs that these compilers produce require further translation before
they can execute directly on a computer. Many research compilers produce
C programs as their output. Because compilers for C are available on most
computers, this makes the target program executable on all those systems,
at the cost of an extra compilation for the final target. Compilers that tar-
get programming languages rather than the instruction set of a computer are
often called source-to-source translators.

Many other systems qualify as compilers. For example, a typesetting pro-
gram that produces PostScript can be considered a compiler. It takes as
input a specification for how the document should look on the printed page
and it produces as output a PostScript file. PostScript is simply a language
for describing images. Because the typesetting program takes an executable
specification and produces another executable specification, it is a compiler.

The code that turns PostScript into pixels is typically an interpreter, not
a compiler. An interpreter takes as input an executable specification and
produces as output the result of executing the specification.

Source
Program

Results
Interpreter

Some languages, such as Perl, Scheme, and ApL, are more often implemented
with interpreters than with compilers.

Some languages adopt translation schemes that include both compilation
and interpretation. Java is compiled from source code into a form called
bytecode, a compact representation intended to decrease download times for
Java applications. Java applications execute by running the bytecode on the
corresponding Java Virtual Machine (JvM), an interpreter for bytecode. To
complicate the picture further, many implementations of the Jvm include a

1.1 Introduction 3

Instruction set

The set of operations supported by a processor;
the overall design of an instruction set is often
called an instruction set architecture or ISA.

Virtual machine

Avirtual machine is a simulator for some
processor. It is an interpreter for that machine’s
instruction set.
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compiler that executes at runtime, sometimes called a just-in-time compiler,
or JIT, that translates heavily used bytecode sequences into native code for
the underlying computer.

Interpreters and compilers have much in common. They perform many of the
same tasks. Both analyze the input program and determine whether or not it
is a valid program. Both build an internal model of the structure and mean-
ing of the program. Both determine where to store values during execution.
However, interpreting the code to produce a result is quite different from
emitting a translated program that can be executed to produce the result. This
book focuses on the problems that arise in building compilers. However, an
implementor of interpreters may find much of the material relevant.

Why Study Compiler Construction?

A compiler is a large, complex program. Compilers often include hundreds
of thousands, if not millions, of lines of code, organized into multiple sub-
systems and components. The various parts of a compiler interact in complex
ways. Design decisions made for one part of the compiler have impor-
tant ramifications for other parts. Thus, the design and implementation of
a compiler is a substantial exercise in software engineering.

A good compiler contains a microcosm of computer science. It makes practi-
cal use of greedy algorithms (register allocation), heuristic search techniques
(list scheduling), graph algorithms (dead-code elimination), dynamic pro-
gramming (instruction selection), finite automata and push-down automata
(scanning and parsing), and fixed-point algorithms (data-flow analysis). It
deals with problems such as dynamic allocation, synchronization, nam-
ing, locality, memory hierarchy management, and pipeline scheduling. Few
software systems bring together as many complex and diverse compo-
nents. Working inside a compiler provides practical experience in software
engineering that is hard to obtain with smaller, less intricate systems.

Compilers play a fundamental role in the central activity of computer
science: preparing problems for solution by computer. Most software is com-
piled, and the correctness of that process and the efficiency of the resulting
code have a direct impact on our ability to build large systems. Most students
are not satisfied with reading about these ideas; many of the ideas must be
implemented to be appreciated. Thus, the study of compiler construction is
an important component of a computer science education.

Compilers demonstrate the successful application of theory to practical
problems. The tools that automate the production of scanners and parsers
apply results from formal language theory. These same tools are used for
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text searching, website filtering, word processing, and command-language
interpreters. Type checking and static analysis apply results from lattice the-
ory, number theory, and other branches of mathematics to understand and
improve programs. Code generators use algorithms for tree-pattern match-
ing, parsing, dynamic programming, and text matching to automate the
selection of instructions.

Still, some problems that arise in compiler construction are open problems—
that is, the current best solutions have room for improvement. Attempts to
design high-level, universal, intermediate representations have foundered on
complexity. The dominant method for scheduling instructions is a greedy
algorithm with several layers of tie-breaking heuristics. While it is obvious
that compilers should use commutativity and associativity to improve the
code, most compilers that try to do so simply rearrange the expression into
some canonical order.

Building a successful compiler requires expertise in algorithms, engineering,
and planning. Good compilers approximate the solutions to hard problems.
They emphasize efficiency, in their own implementations and in the code
they generate. They have internal data structures and knowledge repre-
sentations that expose the right level of detail—enough to allow strong
optimization, but not enough to force the compiler to wallow in detail.
Compiler construction brings together ideas and techniques from across the
breadth of computer science and applies them in a constrained setting to
solve some truly hard problems.

The Fundamental Principles of Compilation

Compilers are large, complex, carefully engineered objects. While many
issues in compiler design are amenable to multiple solutions and interpre-
tations, there are two fundamental principles that a compiler writer must
keep in mind at all times. The first principle is inviolable:

The compiler must preserve the meaning of the program being compiled.

Correctness is a fundamental issue in programming. The compiler must
preserve correctness by faithfully implementing the “meaning” of its input
program. This principle lies at the heart of the social contract between the
compiler writer and compiler user. If the compiler can take liberties with
meaning, then why not simply generate a nop or a return? If an incorrect
translation is acceptable, why expend the effort to get it right?

The second principle that a compiler must observe is practical:

The compiler must improve the input program in some discernible way.
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A traditional compiler improves the input program by making it directly
executable on some target machine. Other “compilers” improve their input
in different ways. For example, tpic is a program that takes the specifica-
tion for a drawing written in the graphics language pic and converts it into
IATEX; the “improvement” lies in I&TEX’s greater availability and generality.
A source-to-source translator for ¢ must produce code that is, in some mea-
sure, better than the input program,; if it is not, why would anyone invoke it?

1.2 COMPILER STRUCTURE

A compiler is a large, complex software system. The community has been
building compilers since 1955, and over the years, we have learned many
lessons about how to structure a compiler. Earlier, we depicted a compiler as
a simple box that translates a source program into a target program. Reality,
of course, is more complex than that simple picture.

As the single-box model suggests, a compiler must both understand the
source program that it takes as input and map its functionality to the target
machine. The distinct nature of these two tasks suggests a division of labor
and leads to a design that decomposes compilation into two major pieces: a
front end and a back end.

S T t
ouree Front End IR Back End arge
Program Program

Compiler

The front end focuses on understanding the source-language program. The
back end focuses on mapping programs to the target machine. This sep-
aration of concerns has several important implications for the design and
implementation of compilers.

The front end must encode its knowledge of the source program in some
IR structure for later use by the back end. This intermediate representation (IR)
A compiler uses some set of data structures to becomes the compiler’s definitive representation for the code it is translating.
represent the code that it processes. That formis - A¢ each point in compilation, the compiler will have a definitive represen-
called an intermediate representation, ot tation. It may, in fact, use several different IRs as compilation progresses,
but at each point, one representation will be the definitive 1R. We think of
the definitive IR as the version of the program passed between independent
phases of the compiler, like the IR passed from the front end to the back end
in the preceding drawing.

In a two-phase compiler, the front end must ensure that the source program
is well formed, and it must map that code into the 1r. The back end must map
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MAY YOU STUDY IN INTERESTING TIMES

This is an exciting era in the design and implementation of compilers. In
the 1980s, almost all compilers were large, monolithic systems. They took
as input one of a handful of languages and produced assembly code for
some particular computer. The assembly code was pasted together with
the code produced by other compilations—including system libraries and
application libraries—to form an executable. The executable was stored
on a disk, and at the appropriate time, the final code was moved from the
disk to main memory and executed.

Today, compiler technology is being applied in many different settings. As
computers find applications in diverse places, compilers must cope with
new and different constraints. Speed is no longer the sole criterion for
judging the compiled code. Today, code might be judged on how small
it is, on how much energy it consumes, on how well it compresses, or on
how many page faults it generates when it runs.

At the same time, compilation techniques have escaped from the mono-
lithic systems of the 1980s. They are appearing in many new places. Java
compilers take partially compiled programs (in Java "bytecode" format)
and translate them into native code for the target machine. In this environ-
ment, success requires that the sum of compile time plus runtime must be
less than the cost of interpretation. Techniques to analyze whole programs
are moving from compile time to link time, where the linker can analyze
the assembly code for the entire application and use that knowledge to
improve the program. Finally, compilers are being invoked at runtime to
generate customized code that capitalizes on facts that cannot be known
any earlier. If the compilation time can be kept small and the benefits are
large, this strategy can produce noticeable improvements.

the IR program into the instruction set and the finite resources of the target
machine. Because the back end only processes IR created by the front end, it
can assume that the IR contains no syntactic or semantic errors.

The compiler can make multiple passes over the IR form of the code before
emitting the target program. This should lead to better code, as the compiler
can, in effect, study the code in one phase and record relevant details. Then,
in later phases, it can use these recorded facts to improve the quality of
translation. This strategy requires that knowledge derived in the first pass be
recorded in the IR, where later passes can find and use it.

Finally, the two-phase structure may simplify the process of retargeting  Retargeting

the compiler. We can easily envision constructing multiple back ends for a  The taskof changing the compiler to generate
single front end to produce compilers that accept the same language but tar-  0de for anew processoris often called

get different machines. Similarly, we can envision front ends for different retargeting the compiler.
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languages producing the same IR and using a common back end. Both
scenarios assume that one IR can serve for several combinations of source
and target; in practice, both language-specific and machine-specific details
usually find their way into the IR.

Introducing an IR makes it possible to add more phases to compilation. The
compiler writer can insert a third phase between the front end and the back
Optimizer end. This middle section, or optimizer, takes an IR program as its input and
The middle section of a compiler, called an produces a semantically equivalent IR program as its output. By using the IR
optimizer, analyzes and transforms the & to as an interface, the compiler writer can insert this third phase with minimal
Improve it disruption to the front end and back end. This leads to the following compiler
structure, termed a three-phase compiler.

Source IR - IR Target
Front End Optimizer Back End
Program Program

Compiler

The optimizer is an IR-to-IR transformer that tries to improve the IR program
in some way. (Notice that these transformers are, themselves, compilers
according to our definition in Section 1.1.) The optimizer can make one or
more passes over the IR, analyze the 1R, and rewrite the 1R. The optimizer
may rewrite the IR in a way that is likely to produce a faster target program
from the back end or a smaller target program from the back end. It may
have other objectives, such as a program that produces fewer page faults or
uses less energy.

Conceptually, the three-phase structure represents the classic optimizing
compiler. In practice, each phase is divided internally into a series of passes.
The front end consists of two or three passes that handle the details of
recognizing valid source-language programs and producing the initial IR
form of the program. The middle section contains passes that perform dif-
ferent optimizations. The number and purpose of these passes vary from
compiler to compiler. The back end consists of a series of passes, each of
which takes the IR program one step closer to the target machine’s instruc-
tion set. The three phases and their individual passes share a common
infrastructure. This structure is shown in Figure 1.1.

In practice, the conceptual division of a compiler into three phases, a front
end, a middle section or optimizer, and a back end, is useful. The problems
addressed by these phases are different. The front end is concerned with
understanding the source program and recording the results of its analy-
sis into IR form. The optimizer section focuses on improving the IR form.
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The back end must map the transformed IR program onto the bounded
resources of the target machine in a way that leads to efficient use of those
resources.

Of these three phases, the optimizer has the murkiest description. The term
optimization implies that the compiler discovers an optimal solution to some
problem. The issues and problems that arise in optimization are so com-
plex and so interrelated that they cannot, in practice, be solved optimally.
Furthermore, the actual behavior of the compiled code depends on interac-
tions among all of the techniques applied in the optimizer and the back end.
Thus, even if a single technique can be proved optimal, its interactions with
other techniques may produce less than optimal results. As a result, a good
optimizing compiler can improve the quality of the code, relative to an unop-
timized version. However, an optimizing compiler will almost always fail to
produce optimal code.

The middle section can be a single monolithic pass that applies one or more
optimizations to improve the code, or it can be structured as a series of
smaller passes with each pass reading and writing 1IR. The monolithic struc-
ture may be more efficient. The multipass structure may lend itself to a less
complex implementation and a simpler approach to debugging the compiler.
It also creates the flexibility to employ different sets of optimization in dif-
ferent situations. The choice between these two approaches depends on the
constraints under which the compiler is built and operates.

1.3 OVERVIEW OF TRANSLATION

To translate code written in a programming language into code suitable for
execution on some target machine, a compiler runs through many steps.
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NOTATION

Compiler books are, in essence, about notation. After all, a compiler trans-
lates a program written in one notation into an equivalent program written
in another notation. A number of notational issues will arise in your
reading of this book. In some cases, these issues will directly affect your
understanding of the material.

Expressing Algorithms We have tried to keep the algorithms concise.
Algorithms are written at a relatively high level, assuming that the reader
can supply implementation details. They are written ina sTanted, sans -
serif font.Indentationis both deliberate and significant; it matters most
in an if-then-else construct. Indented code after a then or an else
forms a block. In the following code fragment

if Action [s,word] = “shift s;” then
push word
push s;
word < NextWord(

else if ---

all the statements between the then and the else are part of the then
clause of the if-then-else construct. When a clause in an if-then-
else construct contains just one statement, we write the keyword then
or else onthe same line as the statement.

Writing Code In some examples, we show actual program text written in
some language chosen to demonstrate a particular point. Actual program
text is written in amonospace font.

Arithmetic Operators Finally, we have forsaken the traditional use
of = for X and of / for =, except in actual program text. The meaning
should be clear to the reader.

To make this abstract process more concrete, consider the steps needed to
generate executable code for the following expression:

a <« aXxX2Xbxcxd

where a, b, c, and d are variables, < indicates an assignment, and X is the
operator for multiplication. In the following subsections, we will trace the
path that a compiler takes to turn this simple expression into executable code.

1.3.1 The Front End

Before the compiler can translate an expression into executable target-
machine code, it must understand both its form, or syntax, and its meaning,
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or semantics. The front end determines if the input code is well formed, in
terms of both syntax and semantics. If it finds that the code is valid, it creates
a representation of the code in the compiler’s intermediate representation; if
not, it reports back to the user with diagnostic error messages to identify the
problems with the code.

Checking Syntax

To check the syntax of the input program, the compiler must compare the
program’s structure against a definition for the language. This requires an
appropriate formal definition, an efficient mechanism for testing whether or
not the input meets that definition, and a plan for how to proceed on an
illegal input.

Mathematically, the source language is a set, usually infinite, of strings
defined by some finite set of rules, called a grammar. Two separate passes
in the front end, called the scanner and the parser, determine whether or not
the input code is, in fact, a member of the set of valid programs defined by
the grammar.

Programming language grammars usually refer to words based on their parts
of speech, sometimes called syntactic categories. Basing the grammar rules
on parts of speech lets a single rule describe many sentences. For example,
in English, many sentences have the form

Sentence — Subject verb Object endmark

where verb and endmark are parts of speech, and Sentence, Subject, and
Object are syntactic variables. Sentence represents any string with the form
described by this rule. The symbol “—” reads “derives” and means that an
instance of the right-hand side can be abstracted to the syntactic variable on
the left-hand side.

Consider a sentence like “Compilers are engineered objects.” The first step

in understanding the syntax of this sentence is to identify distinct words

in the input program and to classify each word with a part of speech. In a

compiler, this task falls to a pass called the scanner. The scanner takes a  Scanner

stream of characters and converts it to a stream of classified words—that  the compiler pass that converts asstring of
is, pairs of the form (p,s), where p is the word’s part of speech and s is its ~ haractersintoastream of words
spelling. A scanner would convert the example sentence into the following

stream of classified words:

(noun,“Compilers”), (verb,“are”), (adjective,“engineered”),
noun,“objects”), (endmark,*.”
)
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In practice, the actual spelling of the words might be stored in a hash table
and represented in the pairs with an integer index to simplify equality tests.
Chapter 2 explores the theory and practice of scanner construction.

In the next step, the compiler tries to match the stream of categorized words
against the rules that specify syntax for the input language. For example,
a working knowledge of English might include the following grammatical
rules:

1 Sentence — Subject verb Object endmark
2 Subject — noun

3  Subject — Modifier noun

4 Object — noun

5 Object —  Modifier noun

6  Modifier — adjective

By inspection, we can discover the following derivation for our example
sentence:

Rule Prototype Sentence

—  Sentence

Subject verb Object endmark

noun verb Object endmark

noun verb Modifier noun endmark

o 1N =

noun verb adjective noun endmark

The derivation starts with the syntactic variable Sentence. At each step, it
rewrites one term in the prototype sentence, replacing the term with a right-
hand side that can be derived from that rule. The first step uses Rule 1
to replace Sentence. The second uses Rule 2 to replace Subject. The third
replaces Object using Rule 5, while the final step rewrites Modifier with
adjective according to Rule 6. At this point, the prototype sentence gener-
ated by the derivation matches the stream of categorized words produced by
the scanner.

The derivation proves that the sentence “Compilers are engineered objects.”

belongs to the language described by Rules 1 through 6. The sentence is
Parser grammatically correct. The process of automatically finding derivations is
the compiler pass that determines if the input called parsing. Chapter 3 presents the techniques that compilers use to parse
stream is a sentence in the source language the input program.
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A grammatically correct sentence can be meaningless. For example, the
sentence “Rocks are green vegetables” has the same parts of speech in
the same order as “Compilers are engineered objects,” but has no rational
meaning. To understand the difference between these two sentences requires
contextual knowledge about software systems, rocks, and vegetables.

The semantic models that compilers use to reason about programming lan-  Type checking

guages are simpler than the models needed to understand natural language.  the compiler pass that checks for type-consistent
A compiler builds mathematical models that detect specific kinds of incon-  Uses of names in the input program

sistency in a program. Compilers check for consistency of type; for example,

the expression

a <« aXxX2Xbxc¢cxd

might be syntactically well-formed, but if b and d are character strings, the
sentence might still be invalid. Compilers also check for consistency of num-
ber in specific situations; for example, an array reference should have the
same number of dimensions as the array’s declared rank and a procedure
call should specify the same number of arguments as the procedure’s defini-
tion. Chapter 4 explores some of the issues that arise in compiler-based type
checking and semantic elaboration.

Intermediate Representations

The final issue handled in the front end of a compiler is the generation of
an IR form of the code. Compilers use a variety of different kinds of IR,
depending on the source language, the target language, and the specific trans-

formations that the compiler applies. Some I1Rrs represent the program as a ty « a X 2

graph. Others resemble a sequential assembly code program. The code in  t; <« tg x b

the margin shows how our example expression might look in a low-level, t; < t; X ¢

sequential 1R. Chapter 5 presents an overview of the variety of kinds of Irs ;3 : ‘EZ x d
3

that compilers use.

For every source-language construct, the compiler needs a strategy for how
it will implement that construct in the IR form of the code. Specific choices
affect the compiler’s ability to transform and improve the code. Thus, we
spend two chapters on the issues that arise in generation of IR for source-code
constructs. Procedure linkages are, at once, a source of inefficiency in the
final code and the fundamental glue that pieces together different source files
into an application. Thus, we devote Chapter 6 to the issues that surround
procedure calls. Chapter 7 presents implementation strategies for most other
programming language constructs.
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TERMINOLOGY

A careful reader will notice that we use the word code in many places
where either program or procedure might naturally fit. Compilers can be
invoked to translate fragments of code that range from a single reference
through an entire system of programs. Rather than specify some scope of
compilation, we will continue to use the ambiguous, but more general,
term, code.

1.3.2 The Optimizer

When the front end emits 1R for the input program, it handles the statements
one at a time, in the order that they are encountered. Thus, the initial IR
program contains general implementation strategies that will work in any
surrounding context that the compiler might generate. At runtime, the code
will execute in a more constrained and predictable context. The optimizer
analyzes the 1r form of the code to discover facts about that context and uses
that contextual knowledge to rewrite the code so that it computes the same
answer in a more efficient way.

Efficiency can have many meanings. The classic notion of optimization is
to reduce the application’s running time. In other contexts, the optimizer
might try to reduce the size of the compiled code, or other properties such
as the energy that the processor consumes evaluating the code. All of these
strategies target efficiency.

Returning to our example, consider it in the context shown in Figure 1.2a.
The statement occurs inside a loop. Of the values that it uses, only a and
d change inside the loop. The values of 2, b, and c are invariant in the
loop. If the optimizer discovers this fact, it can rewrite the code as shown in
Figure 1.2b. In this version, the number of multiplications has been reduced
from 4-n to 2-n+2. For n > 1, the rewritten loop should execute faster. This
kind of optimization is discussed in Chapters 8, 9, and 10.

Analysis

Most optimizations consist of an analysis and a transformation. The analysis
determines where the compiler can safely and profitably apply the technique.
Data-flow analysis Compilers use several kinds of analysis to support transformations. Data-
aform of compile-time reasoning about the flow analysis reasons, at compile time, about the flow of values at runtime.
runtime flow of values Data-flow analyzers typically solve a system of simultaneous set equations
that are derived from the structure of the code being translated. Dependence
analysis uses number-theoretic tests to reason about the values that can be
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C <« --- b(_.
a <« 1 €<
. a <1
for i =1 ton t e 2xbXce
read d ]
a < aX2Xbxcxd for i =1 tomn
end read d
a < axdxt
end
(a) Original Code in Context (b) Improved Code

M FIGURE 1.2 Context Makes a Difference.

assumed by subscript expressions. It is used to disambiguate references to
array elements. Chapter 9 presents a detailed look at data-flow analysis and
its application, along with the construction of static-single-assignment form,
an IR that encodes information about the flow of both values and control
directly in the IR.

Transformation

To improve the code, the compiler must go beyond analyzing it. The com-
piler must use the results of analysis to rewrite the code into a more
efficient form. Myriad transformations have been invented to improve the
time or space requirements of executable code. Some, such as discovering
loop-invariant computations and moving them to less frequently executed
locations, improve the running time of the program. Others make the code
more compact. Transformations vary in their effect, the scope over which
they operate, and the analysis required to support them. The literature on
transformations is rich; the subject is large enough and deep enough to
merit one or more separate books. Chapter 10 covers the subject of scalar
transformations—that is, transformations intended to improve the perfor-
mance of code on a single processor. It presents a taxonomy for organizing
the subject and populates that taxonomy with examples.

1.3.3 The Back End

The compiler’s back end traverses the 1R form of the code and emits code
for the target machine. It selects target-machine operations to implement
each 1R operation. It chooses an order in which the operations will execute
efficiently. It decides which values will reside in registers and which values
will reside in memory and inserts code to enforce those decisions.
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ABOUT ILOC

Throughout the book, low-level examples are written in a notation that
we call ILoC—an acronym derived from "intermediate language for an
optimizing compiler." Over the years, this notation has undergone many
changes. The version used in this book is described in detail in Appendix A.

Think of ILOC as the assembly language for a simple RISC machine. It has a
standard set of operations. Most operations take arguments that are regis-
ters. The memory operations, 1oads and stores, transfer values between
memory and the registers. To simplify the exposition in the text, most
examples assume that all data consists of integers.

Each operation has a set of operands and a target. The operation is written
in five parts: an operation name, a list of operands, a separator, a list of
targets, and an optional comment. Thus, to add registers 1 and 2, leaving
the result in register 3, the programmer would write

add ri,rp = r3 // example instruction

The separator, =, precedes the target list. It is a visual reminder that infor-
mation flows from left to right. In particular, it disambiguates cases where
a person reading the assembly-level text can easily confuse operands and
targets. (See ToadAI and storeAT in the following table.)

The example in Figure 1.3 only uses four ILOC operations:

ILOC Operation Meaning
ToadAI ri,Co=rjs Memory(ri+co) — rj
loadl cp =r cpL—>ry
mult ri{,rp=ris ryXro—rs
storeAl rq =ry,c3 r;— Memory(ry+cj)

Appendix A contains a more detailed description of ILOC. The examples
consistently use rapp as a register that contains the start of data storage
for the current procedure, also known as the activation record pointer.

Instruction Selection

The first stage of code generation rewrites the IR operations into target

tg < ax2 machine operations, a process called instruction selection. Instruction
E; ((: E(l] i 2 selection maps each IR operation, in its context, into one or more
ty < t, x d target machine operations. Consider rewriting our example expression,
a <« t3 a < a X 2 X b xc xd, into code for the 1Loc virtual machine to

illustrate the process. (We will use 1Loc throughout the book.) The 1R form
of the expression is repeated in the margin. The compiler might choose
the operations shown in Figure 1.3. This code assumes that a, b, ¢, and d



1.3 Overview of Translation 17

ToadAl  rarp, @ = ry // load ‘a’

loadl 2 = ry // constant 2 into rp

1oadAl raprp, @ = rp // load ‘b’

ToadAl raprp, @ = r¢ // load ‘c’

ToadAl rarp, @ = rq // load °‘d

mult ra, ro = ra /] rg <= a xX?2

mult ra, rp = rj // rqg <= (a X 2) Xb

mult ra, re = rj /] rqg <= (a X2 XDb) Xc
mult ra, rq = ra /] rqg < (a X2 XDbXc)Xxd
storeAl rj = rarp,@ // write ra back to ‘a’

M FIGURE 1.3 itocCodefora <— a X 2 X b X ¢ X d.

are located at offsets @a, @b, @c, and @d from an address contained in the
register rarp.

The compiler has chosen a straightforward sequence of operations. It loads
all of the relevant values into registers, performs the multiplications in order,
and stores the result to the memory location for a. It assumes an unlimited
supply of registers and names them with symbolic names such as rj to hold
a and rarp to hold the address where the data storage for our named values
begins. Implicitly, the instruction selector relies on the register allocator to
map these symbolic register names, or virtual registers, to the actual registers  Virtual register

of the target machine. a symbolic register name that the compiler uses
to indicate that a value can be stored in a register
The instruction selector can take advantage of special operations on

the target machine. For example, if an immediate-multiply operation
(mu1tI) is available, it might replace the operation mult ra,ro = ra with
multlra, 2= ra, eliminating the need for the operation 10adI 2= r, and
reducing the demand for registers. If addition is faster than multiplica-
tion, it might replace mult ra, ro = ra with add ra, ra = ra, avoiding both
the ToadI and its use of r,, as well as replacing the mult with a faster
add. Chapter 11 presents two different techniques for instruction selec-
tion that use pattern matching to choose efficient implementations for 1R
operations.

Register Allocation

During instruction selection, the compiler deliberately ignored the fact
that the target machine has a limited set of registers. Instead, it used vir-
tual registers and assumed that “enough” registers existed. In practice, the
earlier stages of compilation may create more demand for registers than the
hardware can support. The register allocator must map those virtual registers
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onto actual target-machine registers. Thus, the register allocator decides, at
each point in the code, which values should reside in the target-machine reg-
isters. It then rewrites the code to reflect its decisions. For example, a register
allocator might minimize register use by rewriting the code from Figure 1.3

as follows:

ToadAl rarp, @ = r] // load ‘a’

add ri, r = r // ri < ax?2

loadAl rarp, @ = 1y // load ‘b’

mult re, ro = nr // rp < (ax2) XD

ToadAl rarp, @c = rp // load ‘c’

mult re, ro = nr // r1 < (a x2XDb)Xc
ToadAl  rarp, @ = rp // load *d’

mult ri, ro = ri // r1 < (a x2Xhbxc)xd
storeAl rp = rarp, @a // write ry back to ‘a’

This sequence uses three registers instead of six.

Minimizing register use may be counterproductive. If, for example, any of
the named values, a, b, c, or d, are already in registers, the code should
reference those registers directly. If all are in registers, the sequence could
be implemented so that it required no additional registers. Alternatively, if
some nearby expression also computed a X 2, it might be better to preserve
that value in a register than to recompute it later. This optimization would
increase demand for registers but eliminate a later instruction. Chapter 13
explores the problems that arise in register allocation and the techniques that
compiler writers use to solve them.

Instruction Scheduling

To produce code that executes quickly, the code generator may need to
reorder operations to reflect the target machine’s specific performance con-
straints. The execution time of the different operations can vary. Memory
access operations can take tens or hundreds of cycles, while some arith-
metic operations, particularly division, take several cycles. The impact of
these longer latency operations on the performance of compiled code can be
dramatic.

Assume, for the moment, that a 1oadAI or storeAl operation requires three
cycles, amult requires two cycles, and all other operations require one cycle.
The following table shows how the previous code fragment performs under
these assumptions. The Start column shows the cycle in which each oper-
ation begins execution and the End column shows the cycle in which it
completes.
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Start End

1 3  loadAl Farp, @ = rq // Toad ‘a’

4 4 add re,rp =rg //ry <—ax2

5 7 ToadAl Farp, @ = ry // Toad ‘b’

8 9 mult ry,rp  =rg /lrq1 < (ax2)Xb

10 12 TloadAl rarp, @ = r; // Toad ‘c’

13 14 mult ry,ro =rg //r1 < (ax2Xb)Xc
15 17 loadAl Farp, @ =r; // Toad ‘d’

18 19 mult ry,rp =rj /lr <= (ax2xbxc)xd
20 22 storeAl rq = rarp, @ //writergback to ‘a’

This nine-operation sequence takes 22 cycles to execute. Minimizing regis-
ter use did not lead to rapid execution.

Many processors have a property by which they can initiate new operations
while a long-latency operation executes. As long as the results of a long-
latency operation are not referenced until the operation completes, execution
proceeds normally. If, however, some intervening operation tries to read the
result of the long-latency operation prematurely, the processor delays the
operation that needs the value until the long-latency operation completes.
An operation cannot begin to execute until its operands are ready, and its
results are not ready until the operation terminates.

The instruction scheduler reorders the operations in the code. It attempts to
minimize the number of cycles wasted waiting for operands. Of course, the
scheduler must ensure that the new sequence produces the same result as the
original. In many cases, the scheduler can drastically improve the perfor-
mance of “naive” code. For our example, a good scheduler might produce
the following sequence:

Start End

1 3 ToadAl Farp, @ = rq // 1oad ‘a’

2 4  loadAl Farp, @ =1, // 1oad ‘b’

3 5 ToadAl Farp, @ = r3 // 1oad ‘c’

4 4 add re,ry =ri //r1<—a><2

5 6 mult ry, ro =rg //r] < (axX2)Xb

6 8 ToadAl Farp, @ = rp // 1oad ‘d’

7 8 mult ry,ry =ri /lrp < (ax2Xb)Xxc

9 10 mult ry,rp =ri //r] < (ax2xbxc)xd
11 13 storeAl r = rarp, @ //writerg back to ‘a’
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COMPILER CONSTRUCTION IS ENGINEERING

A typical compiler has a series of passes that, together, translate code
from some source language into some target language. Along the way,
the compiler uses dozens of algorithms and data structures. The compiler
writer must select, for each step in the process, an appropriate solution.

A successful compiler executes an unimaginable number of times. Con-
sider the total number of times that GCC compiler has run. Over GCC's
lifetime, even small inefficiencies add up to a significant amount of time.
The savings from good design and implementation accumulate over time.
Thus, the compiler writer must pay attention to compile time costs, such
as the asymptotic complexity of algorithms, the actual running time of
the implementation, and the space used by data structures. The compiler
writer should have in mind a budget for how much time the compiler will
spend on its various tasks.

For example, scanning and parsing are two problems for which efficient
algorithms abound. Scanners recognize and classify words in time pro-
portional to the number of characters in the input program. For a typical
programming language, a parser can build derivations in time proportional
to the length of the derivation. (The restricted structure of programming
languages makes efficient parsing possible.) Because efficient and effec-
tive techniques exist for scanning and parsing, the compiler writer should
expect to spend just a small fraction of compile time on these tasks.

By contrast, optimization and code generation contain several problems
that require more time. Many of the algorithms that we will examine for
program analysis and optimization will have complexities greater than
O(n). Thus, algorithm choice in the optimizer and code generator has a
larger impact on compile time than it does in the compiler’s front end. The
compiler writer may need to trade precision of analysis and effectiveness
of optimization against increases in compile time. He or she should make
such decisions consciously and carefully.

This version of the code requires just 13 cycles to execute. The code uses
one more register than the minimal number. It starts an operation in every
cycle except 8, 10, and 12. Other equivalent schedules are possible, as are
equal-length schedules that use more registers. Chapter 12 presents several
scheduling techniques that are in widespread use.

Interactions Among Code-Generation Components

Most of the truly hard problems that occur in compilation arise during code
generation. To make matters more complex, these problems interact. For
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example, instruction scheduling moves 10ad operations away from the arith-
metic operations that depend on them. This can increase the period over
which the values are needed and, correspondingly, increase the number of
registers needed during that period. Similarly, the assignment of particular
values to specific registers can constrain instruction scheduling by creating
a “false” dependence between two operations. (The second operation can-
not be scheduled until the first completes, even though the values in the
common register are independent. Renaming the values can eliminate this
false dependence, at the cost of using more registers.)

1.4 SUMMARY AND PERSPECTIVE

Compiler construction is a complex task. A good compiler combines ideas
from formal language theory, from the study of algorithms, from artificial
intelligence, from systems design, from computer architecture, and from the
theory of programming languages and applies them to the problem of trans-
lating a program. A compiler brings together greedy algorithms, heuristic
techniques, graph algorithms, dynamic programming, DFAs and NFAs, fixed-
point algorithms, synchronization and locality, allocation and naming, and
pipeline management. Many of the problems that confront the compiler are
too hard for it to solve optimally; thus, compilers use approximations, heuris-
tics, and rules of thumb. This produces complex interactions that can lead to
surprising results—both good and bad.

To place this activity in an orderly framework, most compilers are organized
into three major phases: a front end, an optimizer, and a back end. Each
phase has a different set of problems to tackle, and the approaches used to
solve those problems differ, too. The front end focuses on translating source
code into some IR. Front ends rely on results from formal language theory
and type theory, with a healthy dose of algorithms and data structures. The
middle section, or optimizer, translates one IR program into another, with
the goal of producing an 1R program that executes efficiently. Optimizers
analyze programs to derive knowledge about their runtime behavior and then
use that knowledge to transform the code and improve its behavior. The back
end maps an IR program to the instruction set of a specific processor. A back
end approximates the answers to hard problems in allocation and scheduling,
and the quality of its approximation has a direct impact on the speed and size
of the compiled code.

This book explores each of these phases. Chapters 2 through 4 deal with
the algorithms used in a compiler’s front end. Chapters 5 through 7 describe
background material for the discussion of optimization and code generation.
Chapter 8 provides an introduction to code optimization. Chapters 9 and 10
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provide more detailed treatment of analysis and optimization for the inter-
ested reader. Finally, Chapters 11 through 13 cover the techniques used by
back ends for instruction selection, scheduling, and register allocation.

B CHAPTER NOTES

The first compilers appeared in the 1950s. These early systems showed
surprising sophistication. The original FORTRAN compiler was a multipass
system that included a distinct scanner, parser, and register allocator, along
with some optimizations [26, 27]. The Alpha system, built by Ershov and
his colleagues, performed local optimization [139] and used graph coloring
to reduce the amount of memory needed for data items [140, 141].

Knuth provides some interesting recollections of compiler construction in
the early 1960s [227]. Randell and Russell describe early implementa-
tion efforts for Algol 60 [293]. Allen describes the history of compiler
development inside 1BM with an emphasis on the interplay of theory and
practice [14].

Many influential compilers were built in the 1960s and 1970s. These include
the classic optimizing compiler FORTRAN H [252, 307], the Bliss-11 and
Bliss-32 compilers [72, 356], and the portable BcPL compiler [300]. These
compilers produced high-quality code for a variety of cisc machines. Com-
pilers for students, on the other hand, focused on rapid compilation, good
diagnostic messages, and error correction [97, 146].

The advent of Rrisc architecture in the 1980s led to another generation of
compilers; these focused on strong optimization and code generation [24,
81, 89, 204]. These compilers featured full-blown optimizers structured as
shown in Figure 1.1. Modern Risc compilers still follow this model.

During the 1990s, compiler-construction research focused on reacting to
the rapid changes taking place in microprocessor architecture. The decade
began with Intel’s i860 processor challenging compiler writers to manage
pipelines and memory latencies directly. At its end, compilers confronted
challenges that ranged from multiple functional units to long memory laten-
cies to parallel code generation. The structure and organization of 1980s Rrisc
compilers proved flexible enough for these new challenges, so researchers
built new passes to insert into the optimizers and code generators of their
compilers.

While Java systems use a mix of compilation and interpretation [63, 279],
Java is not the first language to employ such a mix. Lisp systems have long
included both native-code compilers and virtual-machine implementation
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schemes [266, 324]. The Smalltalk-80 system used a bytecode distribution
and a virtual machine [233]; several implementations added just-in-time
compilers [126].

B EXERCISES

1. Consider a simple Web browser that takes as input a textual string in
HTML format and displays the specified graphics on the screen. Is the
display process one of compilation or interpretation?

2. Indesigning a compiler, you will face many tradeoffs. What are the
five qualities that you, as a user, consider most important in a compiler
that you purchase? Does that list change when you are the compiler
writer? What does your list tell you about a compiler that you would
implement?

3. Compilers are used in many different circumstances. What differences
might you expect in compilers designed for the following applications?
a. A just-in-time compiler used to translate user interface code
downloaded over a network

b. A compiler that targets the embedded processor used in a cellular
telephone

c. A compiler used in an introductory programming course at a high
school

d. A compiler used to build wind-tunnel simulations that run on a
massively parallel processor (where all processors are identical)

e. A compiler that targets numerically intensive programs to a large
number of diverse machines
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Chapter

B CHAPTER OVERVIEW

The scanner’s task is to transform a stream of characters into a stream of
words in the input language. Each word must be classified into a syntactic
category, or “part of speech.” The scanner is the only pass in the compiler
to touch every character in the input program. Compiler writers place a pre-
mium on speed in scanning, in part because the scanner’s input is larger,
in some measure, than that of any other pass, and, in part, because highly
efficient techniques are easy to understand and to implement.

This chapter introduces regular expressions, a notation used to describe
the valid words in a programming language. It develops the formal mech-
anisms to generate scanners from regular expressions, either manually or
automatically.

Keywords: Scanner, Finite Automaton, Regular Expression, Fixed Point

2.1 INTRODUCTION

Scanning is the first stage of a three-part process that the compiler uses
to understand the input program. The scanner, or lexical analyzer, reads a
stream of characters and produces a stream of words. It aggregates charac-
ters to form words and applies a set of rules to determine whether or not each
word is legal in the source language. If the word is valid, the scanner assigns
it a syntactic category, or part of speech.

The scanner is the only pass in the compiler that manipulates every charac-
ter of the input program. Because scanners perform a relatively simple task,
grouping characters together to form words and punctuation in the source
language, they lend themselves to fast implementations. Automatic tools
for scanner generation are common. These tools process a mathematical

Engineering a Compiler. DOI: 10.1016/B978-0-12-088478-0.00002-5
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description of the language’s lexical syntax and produce a fast recognizer.
Alternatively, many compilers use hand-crafted scanners; because the task
is simple, such scanners can be fast and robust.

Conceptual Roadmap

This chapter describes the mathematical tools and programming techniques
that are commonly used to construct scanners—both generated scanners
and hand-crafted scanners. The chapter begins, in Section 2.2, by introduc-

Recognizer ing a model for recognizers, programs that identify words in a stream of

aprogram that identifies specific words in a characters. Section 2.3 describes regular expressions, a formal notation for

stream of characters specifying syntax. In Section 2.4, we show a set of constructions to convert a
regular expression into a recognizer. Finally, in Section 2.5 we present three
different ways to implement a scanner: a table-driven scanner, a direct-coded
scanner, and a hand-coded approach.

Both generated and hand-crafted scanners rely on the same underlying tech-
niques. While most textbooks and courses advocate the use of generated
scanners, most commercial compilers and open-source compilers use hand-
crafted scanners. A hand-crafted scanner can be faster than a generated
scanner because the implementation can optimize away a portion of the over-
head that cannot be avoided in a generated scanner. Because scanners are
simple and they change infrequently, many compiler writers deem that the
performance gain from a hand-crafted scanner outweighs the convenience
of automated scanner generation. We will explore both alternatives.

Overview

A compiler’s scanner reads an input stream that consists of characters
and produces an output stream that contains words, each labelled with its

Syntactic category syntactic category—equivalent to a word’s part of speech in English. To
a dassification of words according to their accomplish this aggregation and classification, the scanner applies a set of
grammatical usage rules that describe the lexical structure of the input programming language,
Microsyntax sometimes called its microsyntax. The microsyntax of a programming lan-
the lexical structure of a language guage specifies how to group characters into words and, conversely, how to

separate words that run together. (In the context of scanning, we consider
punctuation marks and other symbols as words.)

Western languages, such as English, have simple microsyntax. Adjacent
alphabetic letters are grouped together, left to right, to form a word.
A blank space terminates a word, as do most nonalphabetic symbols. (The
word-building algorithm can treat a hyphen in the midst of a word as
if it were an alphabetic character.) Once a group of characters has been
aggregated together to form a potential word, the word-building algorithm
can determine its validity with a dictionary lookup.
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Most programming languages have equally simple microsyntax. Characters
are aggregated into words. In most languages, blanks and punctuation marks
terminate a word. For example, Algol and its descendants define an identifier
as a single alphabetic character followed by zero or more alphanumeric char-
acters. The identifier ends with the first nonalphanumeric character. Thus,
fee and fle are valid identifiers, but 12fum is not. Notice that the set of
valid words is specified by rules rather than by enumeration in a dictionary.

In a typical programming language, some words, called keywords or res-  Keyword

erved words, match the rule for an identifier but have special meanings. Both ~ aword that is reserved for a particular syntactic
while and static are keywords in both C and Java. Keywords (and punc-  Purposeand, thus, cannot be used as an identifier
tuation marks) form their own syntactic categories. Even though static

matches the rule for an identifier, the scanner in a C or Java compiler would

undoubtedly classify it into a category that has only one element, the key-

word static. To recognize keywords, the scanner can either use dictionary

lookup or encode the keywords directly into its microsyntax rules.

The simple lexical structure of programming languages lends itself to effi-
cient scanners. The compiler writer starts from a specification of the lan-
guage’s microsyntax. She either encodes the microsyntax into a notation
accepted by a scanner generator, which then constructs an executable scan-
ner, or she uses that specification to build a hand-crafted scanner. Both
generated and hand-crafted scanners can be implemented to require just
O(1) time per character, so they run in time proportional to the number of
characters in the input stream.

2.2 RECOGNIZING WORDS

The simplest explanation of an algorithm to recognize words is often a
character-by-character formulation. The structure of the code can provide
some insight into the underlying problem. Consider the problem of recog-
nizing the keyword new. Assuming the presence of a routine NextChar that
returns the next character, the code might look like the fragment shown in
Figure 2.1. The code tests for n followed by e followed by w. At each step,
failure to match the appropriate character causes the code to reject the string
and “try something else.” If the sole purpose of the program was to recog-
nize the word new, then it should print an error message or return failure.
Because scanners rarely recognize only one word, we will leave this “error
path” deliberately vague at this point.

The code fragment performs one test per character. We can represent the
code fragment using the simple transition diagram shown to the right of the
code. The transition diagram represents a recognizer. Each circle represents
an abstract state in the computation. Each state is labelled for convenience.
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¢ <« NextChar();
if (c="n")
then begin;
c <« NextChar();
if (c = ‘e’)
then begin;
c <« NextChar();
if (c="w")
then report success ;
else try something else ;
end;
else try something else ;

end;
else try something else ;

M FIGURE 2.1 (ode Fragment to Recognize "new".

The initial state, or start state, is so. We will always label the start state as
so. State s3 is an accepting state; the recognizer reaches s3 only when the
input is new. Accepting states are drawn with double circles, as shown in
the margin. The arrows represent transitions from state to state based on the
input character. If the recognizer starts in sy and reads the characters n, e,
and w, the transitions take us to s3. What happens on any other input, such
as n, o, and t? The n takes the recognizer to s;. The o does not match the
edge leaving s, so the input word is not new. In the code, cases that do not
match new try something else. In the recognizer, we can think of this action
as a transition to an error state. When we draw the transition diagram of a
recognizer, we usually omit transitions to the error state. Each state has a
transition to the error state on each unspecified input.

Using this same approach to build a recognizer for whi1e would produce the
following transition diagram:

If it starts in so and reaches ss, it has identified the word while. The

corresponding code fragment would involve five nested if-then-else
constructs.

To recognize multiple words, we can create multiple edges that leave a given
state. (In the code, we would begin to elaborate the do something else paths.)
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One recognizer for both new and not might be

The recognizer uses a common test for n that takes it from sp to sy,
n . . .. e

denoted so— s1. If the next character is e, it takes the transition s; — s7.
. . . 0 .

If, instead, the next character is o, it makes the move s; — s4. Finally, a w

. .. w . . t

in sy, causes the transition s, — s3, while a t in s4 produces s4 — s5. State

s3 indicates that the input was new while s5 indicates that it was not. The

recognizer takes one transition per input character.

We can combine the recognizer for new or not with the one for while by
merging their initial states and relabeling all the states.

State s¢ has transitions for n and w. The recognizer has three accepting states,
s3, 85, and s1¢. If any state encounters an input character that does not match
one of its transitions, the recognizer moves to an error state.

2.2.1 A Formalism for Recognizers

Transition diagrams serve as abstractions of the code that would be required
to implement them. They can also be viewed as formal mathematical obj-  Finite automaton
ects, called finite automata, that specify recognizers. Formally, a finite  aformalism forrecognizers that has a finite set of

automaton (FA) is a five-tuple (S, £, 8, 5o, S4), where states, an alphabet, a transition function, a start
state, and one or more accepting states

m S is the finite set of states in the recognizer, along with an error state s,.
m X is the finite alphabet used by the recognizer. Typically, X is the union
of the edge labels in the transition diagram.
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m  §(s,c) is the recognizer’s transition function. It maps each state s € S
and each character ¢ € ¥ into some next state. In state s; with input
character c, the FA takes the transition s; 5 8(s,0).
so € S is the designated start state.

S is the set of accepting states, Sy € S. Each state in S4 appears as a
double circle in the transition diagram.

As an example, we can cast the FA for new or not or while in the formalism
as follows:

S =1{50,51,52,53,54,55,56,57, 58559,510>Se}

YX={e,h,i,1,n,0,t,w}

n w e 0 w

5 s0—S1, SQ—S¢ S1—>52, S1—>S4, 52— 53,
= h i 1 e

s4— 85, S¢—> 87, S7—>S8, S§—>59, S9— 810

50 = S0
Sa = {s3,55,510}

For all other combinations of state s; and input character ¢, we define
8(sj,c) = s., where s, is the designated error state. This quintuple is equiv-
alent to the transition diagram; given one, we can easily re-create the other.
The transition diagram is a picture of the corresponding FA.

An FA accepts a string x if and only if, starting in s, the sequence of char-
acters in the string takes the Fa through a series of transitions that leaves
it in an accepting state when the entire string has been consumed. This
corresponds to our intuition for the transition diagram. For the string new,
our example recognizer runs through the transitions so—ﬂ> S1, 81 5 s7, and
Ky X s3. Since s3 € S4, and no input remains, the FA accepts new. For the
input string nut, the behavior is different. On n, the FA takes sg LS s1. On u,
it takes s 4 se. Once the FA enters s,, it stays in s, until it exhausts the input
stream.

More formally, if the string x is composed of characters xj x x3...x,, then
the FA (S, X,6,50,S4) accepts x if and only if

S(8(...8(8(6(50,X1),X2),X3) ..., Xn—1), %) € Sa.

Intuitively, this definition corresponds to a repeated application of § to a
pair composed of some state s €S and an input symbol x;. The base case,
8(sp,x1), represents the FA’s initial transition, out of the start state, sg, on
the character x;. The state produced by (s, x1) is then used as input, along
with x>, to § to produce the next state, and so on, until all the input has been
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consumed. The result of the final application of § is, again, a state. If that
state is an accepting state, then the FA accepts x| xp x3 ... X,.

Two other cases are possible. The FA might encounter an error while
processing the string—that is, some character x; might take it into the error
state s.. This condition indicates a lexical error; the string xy x2 x3... x; is
not a valid prefix for any word in the language accepted by the FA. The
FA can also discover an error by exhausting its input and terminating in a
nonaccepting state other than s,. In this case, the input string is a proper pre-
fix of some word accepted by the FA. Again, this indicates an error. Either
kind of error should be reported to the end user.

In any case, notice that the FA takes one transition for each input character.
Assuming that we can implement the Fa efficiently, we should expect the
recognizer to run in time proportional to the length of the input string.

2.2.2 Recognizing More Complex Words

The character-by-character model shown in the original recognizer for not
extends easily to handle arbitrary collections of fully specified words. How
could we recognize a number with such a recognizer? A specific number,
such as 113.4, is easy.

~(-()
To be useful, however, we need a transition diagram (and the correspond-
ing code fragment) that can recognize any number. For simplicity’s sake,
let’s limit the discussion to unsigned integers. In general, an integer is either
zero, or it is a series of one or more digits where the first digit is from one

to nine, and the subsequent digits are from zero to nine. (This definition
rules out leading zeros.) How would we draw a transition diagram for this

definition?
. 0...90...9

The transition sg 3) s1 handles the case for zero. The other path, from sg to
52, to 53, and so on, handles the case for an integer greater than zero. This
path, however, presents several problems. First, it does not end, violating the
stipulation that S is finite. Second, all of the states on the path beginning with
s, are equivalent, that is, they have the same labels on their output transitions
and they are all accepting states.
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char <« NextChar();

state <« sq; S ={50,51,52,5¢}

while (char # eof and state #s.) do »={0,1,2,3,4,5,6,7,8,9}
state <« §(state,char);
char < NextChar(); 0

1-9
S0—> 81,  So —> 82
. S=
end; -9 0-9
s§) —> 8§3, S| —> Se

if (state € Su)
then report acceptance; Sa = {s1.2}
else report failure;

M FIGURE 2.2 A Recognizer for Unsigned Integers.

This FA recognizes a class of strings with a common property: they are all
unsigned integers. It raises the distinction between the class of strings and
the text of any particular string. The class “unsigned integer” is a syntactic

Lexeme category, or part of speech. The text of a specific unsigned integer, such as
the actual text for a word recognized by an ra 113, is its lexeme.

We can simplify the FA significantly if we allow the transition diagram to
have cycles. We can replace the entire chain of states beginning at s, with a
single transition from s, back to itself:

_, ;
(

This cyclic transition diagram makes sense as an FA. From an implemen-
tation perspective, however, it is more complex than the acyclic transition
diagrams shown earlier. We cannot translate this directly into a set of nested
if-then-else constructs. The introduction of a cycle in the transition graph
creates the need for cyclic control flow. We can implement this with a whiTe
loop, as shown in Figure 2.2. We can specify § efficiently using a table:

s 0 1 2 3 4 5 6 7 8 9 Other

So S1 52 S2 S22 S22 52 S22 S22 52 %2 Se
S1 Se Se Se Se Se Se Se Se Se Se Se
S2 S2 52 S22 S2 S22 S2 S22 S22 52 %2 Se
Se Se Se Se Se Se Se Se Se Se Se Se

Changing the table allows the same basic code skeleton to implement other
recognizers. Notice that this table has ample opportunity for compression.
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The columns for the digits 1 through 9 are identical, so they could be
represented once. This leaves a table with three columns: 0, 1...9, and other.
Close examination of the code skeleton shows that it reports failure as soon
as it enters s,, so it never references that row of the table. The implementa-
tion can elide the entire row, leaving a table with just three rows and three
columns.

We can develop similar Fas for signed integers, real numbers, and complex
numbers. A simplified version of the rule that governs identifier names in
Algol-like languages, such as C or Java, might be: an identifier consists of
an alphabetic character followed by zero or more alphanumeric characters. —> . , ‘
This definition allows an infinite set of identifiers, but can be specified with

the simple two-state FA shown to the left. Many programming languages

extend the notion of “alphabetic character” to include designated special

characters, such as the underscore.

FAs can be viewed as specifications for a recognizer. However, they are not
particularly concise specifications. To simplify scanner implementation, we
need a concise notation for specifying the lexical structure of words, and
a way of turning those specifications into an FA and into code that imple-
ments the FA. The remaining sections of this chapter develop precisely those
ideas.

SECTION REVIEW

A character-by-character approach to scanning leads to algorithmic clar-
ity. We can represent character-by-character scanners with a transition
diagram; that diagram, in turn, corresponds to a finite automaton. Small
sets of words are easily encoded in acyclic transition diagrams. Infinite
sets, such as the set of integers or the set of identifiers in an Algol-like
language, require cyclic transition diagrams.

|

Review Questions

Construct an FA to accept each of the following languages:

1. A six-character identifier consisting of an alphabetic character fol-
lowed by zero to five alphanumeric characters

2. A string of one or more pairs, where each pair consists of an open
parenthesis followed by a close parenthesis

3. A Pascal comment, which consists of an open brace, {, followed by
zero or more characters drawn from an alphabet, X, followed by a
close brace, }
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2.3 REGULAR EXPRESSIONS

The set of words accepted by a finite automaton, F, forms a language,
denoted L(F). The transition diagram of the FA specifies, in precise detail,
that language. It is not, however, a specification that humans find intuitive.
For any FA, we can also describe its language using a notation called a reg-
ular expression (RE). The language described by an RE is called a regular
language.

Regular expressions are equivalent to the FAs described in the previous
section. (We will prove this with a construction in Section 2.4.) Simple
recognizers have simple RE specifications.

m  The language consisting of the single word new can be described by an
RE written as new. Writing two characters next to each other implies that
they are expected to appear in that order.

m  The language consisting of the two words new or while can be written
as new or while. To avoid possible misinterpretation of or, we write
this using the symbol | to mean or. Thus, we write the RE as
new | while.

m  The language consisting of new or not can be written as new | not.
Other REs are possible, such as n(ew | ot). Both REs specify the same
pair of words. The RE n(ew | ot) suggests the structure of the FA that we
drew earlier for these two words.

To make this discussion concrete, consider some examples that occur in most
programming languages. Punctuation marks, such as colons, semicolons,
commas, and various brackets, can be represented by their character rep-
resentations. Their REs have the same “spelling” as the punctuation marks
themselves. Thus, the following REs might occur in the lexical specification
for a programming language:

== () {1
Similarly, keywords have simple REs.
if while this integer instanceof

To model more complex constructs, such as integers or identifiers, we need
a notation that can capture the essence of the cyclic edge in an FA.
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The FA for an unsigned integer, shown at the left, has three states: an initial
state so, an accepting state s; for the unique integer zero, and another accept-
ing state s, for all other integers. The key to this FA’s power is the transition
from s, back to itself that occurs on each additional digit. State s, folds the
specification back on itself, creating a rule to derive a new unsigned integer

from an existing one: add another digit to the right end of the existing num-
ber. Another way of stating this rule is: an unsigned integer is either a zero,
or a nonzero digit followed by zero or more digits. To capture the essence
of this FA, we need a notation for this notion of “zero or more occurrences”
of an RE. For the RE x, we write this as x*, with the meaning “zero or more
occurrences of x.” We call the * operator Kleene closure, or closure for short.
Using the closure operator, we can write an RE for this FA:

O1(112]13141516 [71819) (011]12]3]4]516]7] 8]9)*.

2.3.1 Formalizing the Notation

To work with regular expressions in a rigorous way, we must define them
more formally. An RE describes a set of strings over the characters contained
in some alphabet, X, augmented with a character € that represents the empty
string. We call the set of strings a language. For a given RE, r, we denote
the language that it specifies as L(r). An RE is built up from three basic
operations:

1. Alternation The alternation, or union, of two sets of strings, R and S,
denoted R | S,is{x | x € Rorx € S}.

2. Concatenation The concatenation oftwo sets R and S, denoted RS,
contains all strings formed by prepending an element of R onto one
from S,or {xy|x € Rand y € S}.

3. Closure The Kleene closure of a set R, denoted R*, is U?io R!. This is
just the union of the concatenations of R with itself, zero or more times.

For convenience, we sometimes use a notation for finite closure. The nota-  Finite closure ‘

tion R’ denotes from one to i occurrences of R. A finite closure can be  Foranyinteger/, the Rt A designates one to
always be replaced with an enumeration of the possibilities; for example, ~ occurrencesof R

R3is just (R|RR|RRR). The positive closure, denoted R™, is just RR*  Positive closure

and consists of one or more occurrences of R. Since all these closures can  TheRER™ denotes one or more occurrences of R,
be rewritten with the three basic operations, we ignore them in the discussion ~ Oftenwrittenas Uz R

that follows.

Using the three basic operations, alternation, concatenation, and Kleene
closure, we can define the set of REs over an alphabet ¥ as follows:

1. If a € X, then a is also an RE denoting the set containing only a.
2. If r and s are REs, denoting sets L(r) and L(s), respectively, then
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REGULAR EXPRESSIONS IN VIRTUAL LIFE

Regular expressions are used in many applications to specify patterns in
character strings. Some of the early work on translating REs into code was
done to provide a flexible way of specifying strings in the "find" command
of a text editor. From that early genesis, the notation has crept into many
different applications.

Unix and other operating systems use the asterisk as a wildcard to match
substrings against file names. Here,  is a shorthand for the RE X*, speci-
fying zero or more characters drawn from the entire alphabet of legal
characters. (Since few keyboards have a ¥ key, the shorthand has stayed
with us.) Many systems use ? as a wildcard that matches a single character.

The grep family of tools, and their kin in non-Unix systems, implement
regular expression pattern matching. (In fact, grep is an acronym for global
regular-expression pattern match and print.)

Regular expressions have found widespread use because they are easily
written and easily understood. They are one of the techniques of choice
when a program must recognize a fixed vocabulary. They work well for
languages that fit within their limited rules. They are easily translated into
an executable form, and the resulting recognizer is fast.

r| s is an RE denoting the union, or alternation, of L(r) and L(s),
rs is an RE denoting the concatenation of L(r) and L(s), respectively, and
r* is an RE denoting the Kleene closure of L(r).

3. € is an RE denoting the set containing only the empty string.

To eliminate any ambiguity, parentheses have highest precedence, followed
by closure, concatenation, and alternation, in that order.

As a convenient shorthand, we will specify ranges of characters with the
first and the last element connected by an ellipsis, “...”. To make this
abbreviation stand out, we surround it with a pair of square brackets. Thus,
[0... 9] represents the set of decimal digits. It can always be rewritten as
©|112]13141516]71819).

2.3.2 Examples

The goal of this chapter is to show how we can use formal techniques to
automate the construction of high-quality scanners and how we can encode
the microsyntax of programming languages into that formalism. Before pro-
ceeding further, some examples from real programming languages are in
order.
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1. The simplified rule given earlier for identifiers in Algol-like languages,
an alphabetic character followed by zero or more alphanumeric
characters, is just ([A... Z] | [a...2]) ([A...Z]]|[a...z]|[O...9])*. Most
languages also allow a few special characters, such as the underscore (.),
the percent sign (%), or the ampersand (&), in identifiers.
If the language limits the maximum length of an identifier, we can use
the appropriate finite closure. Thus, identifiers limited to six characters
might be specified as ([A...Z]|[a...z]) ([A...Z]|[a...2]|[O... 9> If
we had to write out the full expansion of the finite closure, the RE would
be much longer.
2. An unsigned integer can be described as either zero or a nonzero digit
followed by zero or more digits. The RE 0| [1...9][0... 9]* is more
concise. In practice, many implementations admit a larger class of
strings as integers, accepting the language [0... 9]*.
3. Unsigned real numbers are more complex than integers. One possible RE
might be (0| [1...9][0...91%) (e|.[0...91%) The first part is just the RE
for an integer. The rest generates either the empty string or a decimal
point followed by zero or more digits.
Programming languages often extend real numbers to scientific notation,
asin (O|[1...9][0...91%) (| .[0...91") E(e| + | —)
O[[1...9110...91%).
This RE describes a real number, followed by an E, followed by an
integer to specify the exponent.
4. Quoted character strings have their own complexity. In most languages, Complement operator
any character can appear inside a string. While we can write an RE for The notation ¢ specifies the set { = — ¢},
strings using only the basic operators, it is our first example where a the complement of ¢ with respect to 3.
complement operator simplifies the RE. Using complement, a character Complement has higher precedence than

string in ¢ or Java can be described as “(™")* . * ot

¢ and c++ do not allow a string to span multiple lines in the source

code—that is, if the scanner reaches the end of a line while inside a Escape sequence

string, it terminates the string and issues an error message. If we Two or more characters that the scanner
represent newline with the escape sequence \n, in the c style, then the translates into another character. Escape

sequences are used for characters that lack a
glyph, such as newline or tab, and for ones that
occur in the syntax, such as an open or close
quote.

RE “("(” ] \n))*” will recognize a correctly formed string and will take
an error transition on a string that includes a newline.

5. Comments appear in a number of forms. c++ and Java offer the
programmer two ways of writing a comment. The delimiter // indicates
a comment that runs to the end of the current input line. The RE for this
style of comment is straightforward: // ("\n)* \n, where \n represents the
newline character.
Multiline comments in ¢, c++, and Java begin with the delimiter /* and
end with /. If we could disallow * in a comment, the RE would be
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simple: /= ("*)* /. With *, the RE is more complex: /* (x| *T "/ )* x/.
An FA to implement this RE follows.

The correspondence between the RE and this FA is not as obvious as it
was in the examples earlier in the chapter. Section 2.4 presents
constructions that automate the construction of an FA from an RE.

The complexity of the RE and FA for multiline comments arises from the
use of multi-character delimiters. The transition from s, to 53 encodes
the fact that the recognizer has seen a x so that it can handle either the
appearance of a / or the lack thereof in the correct manner. In contrast,
Pascal uses single-character comment delimiters: { and }, so a Pascal
comment is just { }* }.

Trying to be specific with an RE can also lead to complex expressions. Con-
sider, for example, that the register specifier in a typical assembly language
consists of the letter r followed immediately by a small integer. In 1LOC,
which admits an unlimited set of register names, the RE might be 7[0... 9]",
with the following Fa:

This recognizer accepts r29, and rejects s29. It also accepts r99999, even
though no currently available computer has 100,000 registers.

On a real computer, however, the set of register names is severely limited—
say, to 32, 64, 128, or 256 registers. One way for a scanner to check validity
of a register name is to convert the digits into a number and test whether
or not it falls into the range of valid register numbers. The alternative is to
adopt a more precise RE specification, such as:

r(10...21([0...91]€) | [4...91 | 30| 1]€)))

This RE specifies a much smaller language, limited to register numbers
0 to 31 with an optional leading 0 on single-digit register names. It accepts
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r0, r00, r01, and r31, but rejects r001, r32, and r99999. The corresponding
FA looks like:

Which Fa is better? They both make a single transition on each input charac-
ter. Thus, they have the same cost, even though the second FA checks a more
complex specification. The more complex Fa has more states and transitions,
so its representation requires more space. However, their operating costs are
the same.

This point is critical: the cost of operating an Fa is proportional to the length
of the input, not to the length or complexity of the RE that generates the FA.
More complex REs may produce FAs with more states that, in turn, need more
space. The cost of generating an FA from an RE may also rise with increased
complexity in the RE. But, the cost of FA operation remains one transition
per input character.

Can we improve our description of the register specifier? The previous RE is
both complex and counterintuitive. A simpler alternative might be:

rO|r00 | rl | rO1 |12 | 102 | r3|r03 |14 | r04 | 15| r05 | r6 | r06 | ¥7 | 07 |
r81r08r91r09 | r10 | rll | ri2|ri3|ri4|ri5|ri6|r17 | ri8|r19]|r20]|
r21|r22|r23| r24|r25|r26 127|128 |r29|r30| r31

This RE is conceptually simpler, but much longer than the previous version.
The resulting FA still requires one transition per input symbol. Thus, if we
can control the growth in the number of states, we might prefer this ver-
sion of the RE because it is clear and obvious. However, when our processor
suddenly has 256 or 384 registers, enumeration may become tedious, too.

2.3.3 Closure Properties of REs

Regular expressions and the languages that they generate have been the sub-  Regular languages
ject of extensive study. They have many interesting and useful properties. ~ Any language that can be specified by a regular
Some of these properties play a critical role in the constructions that build ~ expressionis called aregular language.

recognizers from RES.
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PROGRAMMING LANGUAGES VERSUS NATURAL LANGUAGES

Lexical analysis highlights one of the subtle ways in which programming
languages differ from natural languages, such as English or Chinese. In
natural languages, the relationship between a word's representation—its
spelling or its pictogram—and its meaning is not obvious. In English, are is
averb while artisanoun, even though they differ only in the final character.
Furthermore, not all combinations of characters are legitimate words. For
example, arz differs minimally from are and art, but does not occur as a
word in normal English usage.

A scanner for English could use FA-based techniques to recognize potential
words, since all English words are drawn from a restricted alphabet. After
that, however, it must look up the prospective word in a dictionary to
determine if it is, in fact, a word. If the word has a unique part of speech,
dictionary lookup will also resolve that issue. However, many English words
can be classified with several parts of speech. Examples include buoy and
stress; both can be either a noun or a verb. For these words, the part of
speech depends on the surrounding context. In some cases, understanding
the grammatical context suffices to classify the word. In other cases, it
requires an understanding of meaning, for both the word and its context.

In contrast, the words in a programming language are almost always
specified lexically. Thus, any string in [1... 9][0. .. 91* is a positive integer.
The RE [a...Z]([a... Z]|[0... 9)* defines a subset of the Algol identifiers;
arz, are and art are all identifiers, with no lookup needed to establish the
fact. To be sure, some identifiers may be reserved as keywords. However,
these exceptions can be specified lexically, as well. No context is required.

This property results from a deliberate decision in programming lan-
guage design. The choice to make spelling imply a unique part of speech
simplifies scanning, simplifies parsing, and, apparently, gives up little in
the expressiveness of the language. Some languages have allowed words
with dual parts of speech—for example, PL/I has no reserved keywords.
The fact that more recent languages abandoned the idea suggests that
the complications outweighed the extra linguistic flexibility.

Regular expressions are closed under many operations—that is, if we apply
the operation to an RE or a collection of REs, the result is an RE. Obvious
examples are concatenation, union, and closure. The concatenation of two
RES x and y is just xy. Their union is x | y. The Kleene closure of x is just x*.
From the definition of an RE, all of these expressions are also REs.

These closure properties play a critical role in the use of REs to build scan-
ners. Assume that we have an RE for each syntactic category in the source
language, ag,ai, az, ..., a,. Then, to construct an RE for all the valid words
in the language, we can join them with alternation as ag |aj |az2 | ...|an.
Since REs are closed under union, the result is an RE. Anything that we can
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do to an RE for a single syntactic category will be equally applicable to the
RE for all the valid words in the language.

Closure under union implies that any finite language is a regular language.
We can construct an RE for any finite collection of words by listing them
in a large alternation. Because the set of REs is closed under union, that
alternation is an RE and the corresponding language is regular.

Closure under concatenation allows us to build complex REs from sim-
pler ones by concatenating them. This property seems both obvious and
unimportant. However, it lets us piece together REs in systematic ways. Clo-
sure ensures that ab is an RE as long as both a and b are REs. Thus, any
techniques that can be applied to either a or b can be applied to ab; this
includes constructions that automatically generate a recognizer from REs.

Regular expressions are also closed under both Kleene closure and the
finite closures. This property lets us specify particular kinds of large, or even
infinite, sets with finite patterns. Kleene closure lets us specify infinite sets
with concise finite patterns; examples include the integers and unbounded-
length identifiers. Finite closures let us specify large but finite sets with equal
ease.

The next section shows a sequence of constructions that build an Fa to rec-
ognize the language specified by an RE. Section 2.6 shows an algorithm
that goes the other way, from an FA to an RE. Together, these constructions
establish the equivalence of REs and Fas. The fact that REs are closed under
alternation, concatenation, and closure is critical to these constructions.

The equivalence between REs and FAs also suggests other closure properties.

For example, given a complete FA, we can construct an FA that recognizes all ~ Complete FA

words w that are not in L(FA), called the complement of L(Fa). To build this  anfathat explicitly includes all error transitions
new FA for the complement, we can swap the designation of accepting and

nonaccepting states in the original FA. This result suggests that REs are closed

under complement. Indeed, many systems that use REs include a complement

operator, such as the " operator in Tex.

SECTION REVIEW

Regular expressions are a concise and powerful notation for specifying
the microsyntax of programming languages. REs build on three basic
operations over finite alphabets: alternation, concatenation, and Kleene
closure. Other convenient operators, such as finite closures, positive
closure, and complement, derive from the three basic operations. Regular
expressions and finite automata are related; any RE can be realized in an
FA and the language accepted by any FA can be described with RE. The
next section formalizes that relationship.
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|
Review Questions
1. Recall the RE for a six-character identifier, written using a finite closure.

(A...2|[a...2) (A... 2] | a... 21| [O... 9))°

Rewrite it in terms of the three basic RE operations: alternation,
concatenation, and closure.

2. In PL/I, the programmer can insert a quotation mark into a string by
writing two quotation marks in a row. Thus, the string

The quotation mark, should be typeset in italics

would be written in a PL/I program as

nn
B

"The quotation mark, should be typeset in italics."

Design an RE and an FA to recognize PL/I strings. Assume that strings
begin and end with quotation marks and contain only symbols drawn
from an alphabet, designated as X. Quotation marks are the only
special case.

]

2.4 FROM REGULAR EXPRESSION TO SCANNER

The goal of our work with finite automata is to automate the derivation
of executable scanners from a collection of REs. This section develops the
constructions that transform an RE into an FA that is suitable for direct imple-
mentation and an algorithm that derives an RE for the language accepted by
an FA. Figure 2.3 shows the relationship between all of these constructions.

To present these constructions, we must distinguish between deterministic
FAS, or DFAS, and nondeterministic FAS, or NFAS, in Section 2.4.1. Next,

Kleene’s Construction

Code for
a scanner
RE DFA Minimization @FA
Thompson’s Subset
Construction Construction
NFA.

M FIGURE 2.3 The Cycle of Constructions.



2.4 From Regular Expression to Scanner 43

we present the construction of a deterministic FA from an RE in three steps.
Thompson’s construction, in Section 2.4.2, derives an NFA from an RE. The
subset construction, in Section 2.4.3, builds a DFA that simulates an NFA.
Hopcroft’s algorithm, in Section 2.4.4, minimizes a DFA. To establish the
equivalence of REs and DFAs, we also need to show that any DFaA is equiv-
alent to an RE; Kleene’s construction derives an RE from a DFA. Because it
does not figure directly into scanner construction, we defer that algorithm
until Section 2.6.1.

2.4.1 Nondeterministic Finite Automata

Recall from the definition of an RE that we designated the empty string, €, as
an RE. None of the FAs that we built by hand included €, but some of the REs
did. What role does € play in an FA? We can use transitions on € to combine
FAs and form Fas for more complex REs. For example, assume that we have
FAs for the REs m and n, called Fa,, and FA,, respectively.

—~(©® ~(-®

We can build an Fa for mn by adding a transition on € from the accepting  e-transition
state of FA,, to the initial state of FA,,, renumbering the states, and using Fa,,’s  atransition on the empty string, €, that does

accepting state as the accepting state for the new FA. not advance the input

OO0z 0O&
With an e-transition, the definition of acceptance must change slightly to
allow one or more e-transitions between any two characters in the input
string. For example, in 51, the FA takes the transition s i>sz without con-

suming any input character. This is a minor change, but it seems intuitive.
Inspection shows that we can combine s and s; to eliminate the e-transition.

OnOs
Merging two FAs with an e-transition can complicate our model of how FAs
work. Consider the Fas for the languages a* and ab.

a

OnON0)
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We can combine them with an e-transition to form an Fa for a*ab.

a

—()(e()
The € transition, in effect, gives the FA two distinct transitions out of sg
on the letter a. It can take the transition soi>so, or the two transitions
S0 5 s1 and s 5 s2. Which transition is correct? Consider the strings aab
and ab. The DFA should accept both strings. For aab, it should move sq 4 S0,
soi>s1, K| —a>sz, and sz—b>53. For ab, it should move s0i>sl, S —a>sz, and

b
8§72 —> §3.

Nondeterministic FA As these two strings show, the correct transition out of sy on a depends on

an FA that allows transitions on the empty string,  the characters that follow the a. At each step, an FA examines the current

€, and states that have multiple transitions on character. Its state encodes the left context, that is, the characters that it has

the same character already processed. Because the FA must make a transition before examining
the next character, a state such as sg violates our notion of the behavior of a
sequential algorithm. An FA that includes states such as s that have multiple
transitions on a single character is called a nondeterministic finite automaton
Deterministic FA (NFA). By contrast, an FA with unique character transitions in each state is
ADFA is an FA where the transition function is called a deterministic finite automaton (DFA).

single-valued. DFAs do not allow e-transitions.
To make sense of an NFA, we need a set of rules that describe its behavior.

Historically, two distinct models have been given for the behavior of
an NFA.

1. Each time the NFA must make a nondeterministic choice, it follows the
transition that leads to an accepting state for the input string, if such a
transition exists. This model, using an omniscient NFA, is appealing
because it maintains (on the surface) the well-defined accepting
mechanism of the DFA. In essence, the NFA guesses the correct
transition at each point.

2. Each time the NFA must make a nondeterministic choice, the NFA clones
itself to pursue each possible transition. Thus, for a given input
character, the NFA is in a specific set of states, taken across all of its
clones. In this model, the NFA pursues all paths concurrently.

At any point, we call the specific set of states in which the NFA is active
Configuration of an NFA its configuration. When the NFA reaches a configuration in which it has
the set of concurrently active states of an NFA exhausted the input and one or more of the clones has reached an
accepting state, the NFA accepts the string.

In either model, the NFa (S, X,38,50, S4) accepts an input string x; xp x3... X
if and only if there exists at least one path through the transition diagram that
starts in so and ends in some s; € S4 such that the edge labels along the path
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match the input string. (Edges labelled with € are omitted.) In other words,
the i*" edge label must be x;. This definition is consistent with either model
of the NFA’s behavior.

Equivalence of NFAs and DFAs

NFAs and DFAs are equivalent in their expressive power. Any DFA is a special
case of an NFA. Thus, an NFA is at least as powerful as a DFA. Any NFA
can be simulated by a DFA—a fact established by the subset construction in
Section 2.4.3. The intuition behind this idea is simple; the construction is a
little more complex.

Consider the state of an NFA when it has reached some point in the input
string. Under the second model of NFA behavior, the NFA has some finite
set of operating clones. The number of these configurations can be bounded,;
for each state, the configuration either includes one or more clones in that
state or it does not. Thus, an NFA with n states produces at most |X|"
configurations.

To simulate the behavior of the NFA, we need a DFA with a state for each

configuration of the NFA. As a result, the DFA may have exponentially more

states than the NFA. While Spgy, the set of states in the DFA, might be large,  Powerset of N

it is finite. Furthermore, the DFA still makes one transition per input symbol.  the setof all subsets of N, denoted 2"
Thus, the DFA that simulates the NFA still runs in time proportional to the

length of the input string. The simulation of an NFA on a DFA has a potential

space problem, but not a time problem.

Since NFAs and DFAs are equivalent, we can construct a DFA for a*ab:

ROROS

It relies on the observation that a*ab specifies the same set of words as aa*b.

2.4.2 Regular Expression to NFA:
Thompson’s Construction

The first step in moving from an RE to an implemented scanner must derive
an NFA from the RE. Thompson’s construction accomplishes this goal in a
straightforward way. It has a template for building the NFA that corresponds
to a single-letter RE, and a transformation on NFAs that models the effect of
each basic RE operator: concatenation, alternation, and closure. Figure 2.4
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~(04 ()

(a) NFA for “a” ) NFA for “b”

(‘

(c) NFA for “ab” ) NFA for “a | b”

€
NOOT010
€
(e) NFA for “a*”

B FIGURE 2.4 Trivial nras for Regular Expression Operators.

shows the trivial NFAs for the RES a and b, as well as the transformations
to form NFAs for the REs ab, a|b, and a* from the NFAs for a and b. The
transformations apply to arbitrary NFAs.

The construction begins by building trivial NFas for each character in the
input RE. Next, it applies the transformations for alternation, concatena-
tion, and closure to the collection of trivial NFAs in the order dictated by
precedence and parentheses. For the RE a(b|c)*, the construction would first
build NFas for a, b, and c. Because parentheses have highest precedence,
it next builds the NFA for the expression enclosed in parentheses, b|c. Clo-
sure has higher precedence than concatenation, so it next builds the closure,
(b|c)*. Finally, it concatenates the NFA for a to the NFa for (b|c)*.

The NFAs derived from Thompson’s construction have several specific prop-
erties that simplify an implementation. Each NFA has one start state and one
accepting state. No transition, other than the initial transition, enters the
start state. No transition leaves the accepting state. An e-transition always
connects two states that were, earlier in the process, the start state and the
accepting state of NFAs for some component REs. Finally, each state has at
most two entering and two exiting e-moves, and at most one entering and
one exiting move on a symbol in the alphabet. Together, these properties
simplify the representation and manipulation of the NFAs. For example, the
construction only needs to deal with a single accepting state, rather than
iterating over a set of accepting states in the NFA.
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RORO O ORONT

) NFAs for “a”, “b”, and “c”

(c) NFA for “(b | ¢)*”

€

(d) NFA for “a(b | ¢)*”

M FIGURE 2.5 Applying Thompson's Construction to a(b|c)*.

Figure 2.5 shows the NFA that Thompson’s construction builds for a(b|c)*. b,c
It has many more states than the DFA that a human would likely produce, _»
shown at left. The NFA also contains many e-moves that are obviously

unneeded. Later stages in the construction will eliminate them.

2.4.3 NFA to DFA: The Subset Construction

Thompson’s construction produces an NFA to recognize the language spec-
ified by an RE. Because DFA execution is much easier to simulate than NFA
execution, the next step in the cycle of constructions converts the NFA built
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REPRESENTING THE PRECEDENCE OF OPERATORS

Thompson's construction must apply its three transformations in an order
that is consistent with the precedence of the operators in the regular
expression. To represent that order, an implementation of Thompson’s
construction can build a tree that represents the regular expression and its
internal precedence. The RE a(b|c)* produces the following tree:

N
l
|

b/ \c

where + represents concatenation, | represents alternation, and x repre-
sents closure. The parentheses are folded into the structure of the tree
and, thus, have no explicit representation.

The construction applies the individual transformations in a postorder walk
over the tree. Since transformations correspond to operations, the pos-
torder walk builds the following sequence of NFAs: a, b, ¢, b|c, (b]c)*, and,
finally, a(b|c)*. Chapters 3 and 4 show how to build expression trees.

by Thompson’s construction into a DFA that recognizes the same language.
The resulting DFAs have a simple execution model and several efficient
implementations. The algorithm that constructs a DFA from an NFA is called
the subset construction.

The subset construction takes as input an NFA, (N, X,8x,1n9,N4). It produces
a DFA, (D,%,8p,do,D4). The NFA and the DFA use the same alphabet, X.
The DFA’s start state, dp, and its accepting states, D4, will emerge from the
construction. The complex part of the construction is the derivation of the
set of DFA states D from the NFA states N, and the derivation of the DFA
transition function ép.

The algorithm, shown in Figure 2.6, constructs a set 0 whose elements, g;

Valid configuration are each a subset of N, that is, each g; € 2N When the algorithm halts, each
configuration of an NFA that can be g;i € Q corresponds to a state, d; € D, in the DFA. The construction builds the
reached by some input string elements of ( by following the transitions that the NFA can make on a given

input. Thus, each g; represents a valid configuration of the NFA.

The algorithm begins with an initial set, go, that contains ng and any states
in the NFA that can be reached from ng along paths that contain only
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qo < e€-closure({ng});
Q < qo:
WorkList < {qo}:

while (WorkList#@ ) do
remove g from WorkList;

for each character ce X do
t < e-closure(Delta(q.c));
Tlgc]l < t;
if t ¢ Q then
add t to Q and to WorkList;
end;

end;

M FIGURE 2.6 The Subset Construction.

e-transitions. Those states are equivalent since they can be reached without
consuming input.

To construct gg from ng, the algorithm computes e-cTosure(ngy). It takes,
as input, a set S of NFA states. It returns a set of NFA states constructed
from S as follows: e-closure examines each state s; € S and adds to S any
state reachable by following one or more e-transitions from s;. If S is the
set of states reachable from ng by following paths labelled with abc, then
e-closure(S) is the set of states reachable from np by following paths
labelled abce*. Initially, Q has only one member, go and the WorklList
contains ¢.

The algorithm proceeds by removing a set g from the worklist. Each ¢ rep-
resents a valid configuration of the original NFA. The algorithm constructs,
for each character c in the alphabet X, the configuration that the NFA would
reach if it read ¢ while in configuration ¢. This computation uses a function
Delta(q.c) that applies the NFA’s transition function to each element of g.
It returns Useg, O (5,€).

The while loop repeatedly removes a configuration ¢ from the worklist and
uses Delta to compute its potential transitions. It augments this computed
configuration with any states reachable by following e-transitions, and adds
any new configurations generated in this way to both 0 and the worklist.
When it discovers a new configuration t reachable from ¢ on character c, the
algorithm records that transition in the table 7. The inner loop, which iterates
over the alphabet for each configuration, performs an exhaustive search.

Notice that Q grows monotonically. The while loop adds sets to Q but never
removes them. Since the number of configurations of the NFa is bounded and
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each configuration only appears once on the worklist, the while loop must
halt. When it halts, Q contains all of the valid configurations of the NFA and
T holds all of the transitions between them.

0 can become large—as large as |27 | distinct states. The amount of nonde-
terminism found in the NFA determines how much state expansion occurs.
Recall, however, that the result is a DFA that makes exactly one transition per
input character, independent of the number of states in the DFA. Thus, any
expansion introduced by the subset construction does not affect the running
time of the DFA.

FromQtoD

When the subset construction halts, it has constructed a model of the desired
DFA, one that simulates the original NFA. Building the DFA from Q and T is
straightforward. Each ¢; € 0 needs a state d; € D to represent it. If g; con-
tains an accepting state of the NFA, then d; is an accepting state of the DFA.
We can construct the transition function, §p, directly from T by observing
the mapping from g¢; to d;. Finally, the state constructed from ¢, becomes
do, the initial state of the DFA.

Example

Consider the NFA built for a(b|c)* in Section 2.4.2 and shown in Figure 2.7a,
with its states renumbered. The table in Figure 2.7b sketches the steps that
the subset construction follows. The first column shows the name of the
set in Q being processed in a given iteration of the while loop. The second
column shows the name of the corresponding state in the new DFA. The third
column shows the set of NFA states contained in the current set from Q. The
final three columns show results of computing the e-closure of Delta on
the state for each character in X.

The algorithm takes the following steps:

1. The initialization sets gg to e-closure({ng} ), which is just ng. The first
iteration computes e-closure(Delta(qp,a)), which contains six NFA
states, and e-cTosure(Delta(qo,b)) and e-cTosure(Delta(go,c)),
which are empty.

2. The second iteration of the while loop examines g;. It produces two
configurations and names them ¢, and g3.

3. The third iteration of the while loop examines g,. It constructs two
configurations, which are identical to g, and g3.

4. The fourth iteration of the while loop examines g3. Like the third
iteration, it reconstructs g> and g3.

Figure 2.7c shows the resulting DFA; the states correspond to the DFA states
from the table and the transitions are given by the Delta operations that
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*n

(a) NFA for “a(b | ¢) ” (With States Renumbered)

e-closure(Delta(q*))
Set DFA NFA
Name States States a b C
ni, ny, n3,
do do no 1123 - none - - none -
N4, ng, N9
q d ni, N2, N3, _ none — ns, ng, Ny, nz, ng, Ny,
! ! N4, Ne, No n3, na, ne n3, na, ne
ns, ng, Ny,
d - none -
2 2 n3, Ng, Ne 92 9
nz, ng, ny,
d - none -
qs 3 n3, Ng, Ne 92 s

(b) Iterations of the Subset Construction

(a) Resulting DFA

M FIGURE 2.7 Applying the Subset Construction to the nra from Figure 2.5.

generate those states. Since the sets gj, g» and g3 all contain ng (the
accepting state of the NFA), all three become accepting states in the DFA.

Fixed-Point Computations

The subset construction is an example of a fixed-point computation, a par-
ticular style of computation that arises regularly in computer science. These
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Monotone function computations are characterized by the iterated application of a monotone
afunction f on domain Dis monotone if, function to some collection of sets drawn from a domain whose structure is
Vxye Dx=y=Fx=fly) known. These computations terminate when they reach a state where further
iteration produces the same answer—a “fixed point” in the space of succes-
sive iterates. Fixed-point computations play an important and recurring role

in compiler construction.

Termination arguments for fixed-point algorithms usually depend on known
properties of the domain. For the subset construction, the domain D is 22N,
since Q = {qo, 41, §2, - - -, qx} Where each ¢; € 2V. Since N is finite, 2V and
22" are also finite. The while loop adds elements to Q; it cannot remove
an element from Q. We can view the while loop as a monotone increasing
function f, which means that for a set x, f(x) > x. (The comparison operator
> is D.) Since Q can have at most |2%| distinct elements, the while loop can
iterate at most |2N | times. It may, of course, reach a fixed point and halt more
quickly than that.

Computing e-closure Offline

An implementation of the subset construction could compute e-closure()
by following paths in the transition graph of the NFA as needed. Figure 2.8
shows another approach: an offline algorithm that computes e-closure ( {n})
for each state n in the transition graph. The algorithm is another example of
a fixed-point computation.

For the purposes of this algorithm, consider the transition diagram of the
NFA as a graph, with nodes and edges. The algorithm begins by creating a
set E for each node in the graph. For a node n, E(n) will hold the current

for each state neN do
E(n) < {n};
end;
WorkList < N;
while (WorkList#@) do
remove n from WorkList;

t < {n) U UnipezSN E(p);
if t£E®n)
then begin;
En) < t;
WorkList < WorkList U {m|mSnesy);
end;
end;

M FIGURE 2.8 An Offline Algorithm for e-closure.
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approximation to e-closure(n). Initially, the algorithm sets E(n) to {n},
for each node n, and places each node on the worklist.

Each iteration of the while loop removes a node n from the worklist, finds  Using a bit-vector set for the worklist can ensure
all of the e-transitions that leave n, and adds their targets to E(n). If that  thatthealgorithm does not have duplicate
computation changes E (n), it places n’s predecessors along e-transitions on  Copies of anode’s name on the worklist.

the worklist. (If n is in the e-closure of its predecessor, adding nodes to E(n)  See Appendix B.2.

must also add them to the predecessor’s set.) This process halts when the

worklist becomes empty.

The termination argument for this algorithm is more complex than that
for the algorithm in Figure 2.6. The algorithm halts when the worklist is
empty. Initially, the worklist contains every node in the graph. Each iteration
removes a node from the worklist; it may also add one or more nodes to the
worklist.

The algorithm only adds a node to the worklist if the E set of its successor
changes. The E (n) sets increase monotonically. For a node x, its successor y
along an e-transition can place x on the worklist at most | E(y)| < |N| times,
in the worst case. If x has multiple successors y; along e-transitions, each of
them can place x on the worklist |E(y;)| < |N| times. Taken over the entire
graph, the worst case behavior would place nodes on the worklist k - |N|
times, where k is the number of e-transitions in the graph. Thus, the worklist
eventually becomes empty and the computation halts.

2.4.4 DFA to Minimal DFA: Hopcroft’s Algorithm

As a final refinement to the RE—DFA conversion, we can add an algorithm
to minimize the number of states in the DFA. The DFA that emerges from
the subset construction can have a large set of states. While this does not
increase the time needed to scan a string, it does increase the size of the
recognizer in memory. On modern computers, the speed of memory accesses
often governs the speed of computation. A smaller recognizer may fit better
into the processor’s cache memory.

To minimize the number of states in a DFA, (D, X,68,dy,Da), we need a
technique to detect when two states are equivalent—that is, when they pro-
duce the same behavior on any input string. The algorithm in Figure 2.9
finds equivalence classes of DFA states based on their behavior. From those
equivalence classes, we can construct a minimal DFA.

The algorithm constructs a set partition, P = {py,p,,ps.... Py}, of the DFA  Set partition
states. The particular partition, P, that it constructs groups together DFA  Aset partition of Sis a collection of

states by their behavior. Two DFA states, d;, d; € p,, have the same behavior in nonempty, disjoint subsets of S whose

. . : union is exactly S.
response to all input characters. That is, if d; S d,, d; 5 dy, and d;,d; € py, )
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T < (Ds, {D—Dy}}: Split(S) {
P <« 0 for each ce ¥ do
while (P # T) do if ¢ splits S into sy and sy
P« T: then return {sy,s2};
T <« ¢ end;
for each set p € P do return S;
T < TUSplitip); }
end;
end;

M FIGURE 2.9 prA Minimization Algorithm.

then d, and dy must be in the same set p;. This property holds for every
set p, € P, for every pair of states d;,d; € p,, and for every input character, c.
Thus, the states in p; have the same behavior with respect to input characters
and the remaining sets in P.

To minimize a DFA, each set p; € P should be as large as possible, within
the constraint of behavioral equivalence. To construct such a partition, the
algorithm begins with an initial rough partition that obeys all the proper-
ties except behavioral equivalence. It then iteratively refines that partition
to enforce behavioral equivalence. The initial partition contains two sets,
po=Da and p; ={D —D,}. This separation ensures that no set in the
final partition contains both accepting and nonaccepting states, since the
algorithm never combines two partitions.

The algorithm refines the initial partition by repeatedly examining each
p, € P to look for states in p; that have different behavior for some input
string. Clearly, it cannot trace the behavior of the DFA on every string. It
can, however, simulate the behavior of a given state in response to a single
input character. It uses a simple condition for refining the partition: a symbol
¢ € ¥ must produce the same behavior for every state d; € p,. If it does not,
the algorithm splits p; around c.

This splitting action is the key to understanding the algorithm. For d; and
d; to remain together in p;, they must take equivalent transitions on each
character c € X. Thatis,Vc € X, d; 5 dy and d; 5 dy, where dy,d, € p,. Any
state di € p, where dx 5 d,, d; ¢ p,, cannot remain in the same partition as d;
and d;. Similarly, if d; and d; have transitions on c and d does not, it cannot
remain in the same partition as d; and d;.

Figure 2.10 makes this concrete. The states in p; = {d;, d;, di} are equivalent
if and only if their transitions, V ¢ € ¥, take them to states that are, them-
selves, in an equivalence class. As shown, each state has a transition on a:

d,»i>dx, dj—a>dy, and dk—a>dz. If d,, dy, and d, are all in the same set in
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a
:
—

P4 P2

a

(a)—|(=)

[«3)

6@9@
©®E)
t®®E

\ P2/ P3 Ps P3
(a) a Does Not Split p4 (b) a Splits p4 (c) Partitions After Split On a

M FIGURE 2.10 Splitting a Partition around a.

the current partition, as shown on the left, then d;, d;, and dj should remain
together and a does not split p;.

On the other hand, if d,, dy, and d, are in two or more different sets, then
a splits p;. As shown in the center drawing of Figure 2.10, d, € p, while
dy and d; € ps, so the algorithm must split p; and construct two new sets
P4 =1{d;} and ps = {d;,d;} to reflect the potential for different outcomes
with strings that begin with the symbol a. The result is shown on the
right side of Figure 2.10. The same split would result if state d; had no
transition on a.

To refine a partition P, the algorithm examines each p € P and each ¢ € X.
If ¢ splits p, the algorithm constructs two new sets from p and adds them
to T'. (It could split p into more than two sets, all having internally consistent
behavior on c. However, creating one consistent state and lumping the rest
of p into another state will suffice. If the latter state is inconsistent in its
behavior on ¢, the algorithm will split it in a later iteration.) The algorithm
repeats this process until it finds a partition where it can split no sets.

To construct the new DFA from the final partition p, we can create a single
state to represent each set p € P and add the appropriate transitions between
these new representative states. For the state representing p;, we add a tran-
sition to the state representing p,, on c if some d; € p; has a transition on
¢ to some di € py. From the construction, we know that if d; has such a
transition, so does every other state in p;; if this were not the case, the algo-
rithm would have split p; around c. The resulting DFA is minimal; the proof
is beyond our scope.

Examples

Consider a DFA that recognizes the language fee | fie, shown in Figure 2.11a.
By inspection, we can see that states s3 and ss serve the same purpose. Both
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(a) DFA for “fee | fie”

Examines
Current
Step Partition Set Char Action
0 {{s3,55},{50,51,52,54} } — — —
1 {{s3,55},{s0,51,52,54} } {s3,55} all none
2 {{s3,55},{50,51,52,54}}  {so.s152,54} e  split {s3,54}
3 {{s3,55},{s0,51}, {52,854} } {s0,51} f split {s1}
4 {{s3,ss5}h{so} {s1}{s2,54}} all all none

(b) Critical Steps in Minimizing the DFA

~(-CH

(c) The Minimal DFA (States Renumbered)

M FIGURE 2.11 Applying the bFA Minimization Algorithm.

are accepting states entered only by a transition on the letter e. Neither has
a transition that leaves the state. We would expect the DFA minimization
algorithm to discover this fact and replace them with a single state.

Figure 2.11b shows the significant steps that occur in minimizing this
DFA. The initial partition, shown as step 0, separates accepting states from
nonaccepting states. Assuming that the while loop in the algorithm iterates
over the sets of P in order, and over the characters in ¥ = {e, f, 1} in order,
then it first examines the set {s3,s5}. Since neither state has an exiting transi-
tion, the state does not split on any character. In the second step, it examines
{s0,51,52,84}; on the character e, it splits {s2,s4} out of the set. In the third
step, it examines {sg,s;} and splits it around the character f. At that point,
the partition is {{s3,ss5}, {so}, {51}, {52,854} }. The algorithm makes one final
pass over the sets in the partition, splits none of them, and terminates.

To construct the new DFA, we must build a state to represent each set in
the final partition, add the appropriate transitions from the original DFA, and
designate initial and accepting state(s). Figure 2.11c shows the result for this
example.
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(a) Original DFA (b) Initial Partition

M FIGURE 2.12 orafora(b|c*).

As a second example, consider the DFA for a (b |c¢)* produced by Thomp-
son’s construction and the subset construction, shown in Figure 2.12a.
The first step of the minimization algorithm constructs an initial partition
{{do}, {d1.d2,d3}}, as shown on the right. Since p; has only one state, it
cannot be split. When the algorithm examines p,, it finds no transitions on a
from any state in p,. For both b and c, each state has a transition back into p,.
Thus, no symbol in X splits p,, and the final partition is { {do}, {d1,d2,d3}}.

The resulting minimal DFA is shown in Figure 2.12b. Recall that this is _»
the DFA that we suggested a human would derive. After minimization, the
automatic techniques produce the same result.

This algorithm is another example of a fixed-point computation. P is finite;
at most, it can contain |D| elements. The while loop splits sets in P, but
never combines them. Thus, | P| grows monotonically. The loop halts when
some iteration splits no sets in P. The worst-case behavior occurs when
each state in the DFA has different behavior; in that case, the while loop halts
when P has a distinct set for each d; € D. This occurs when the algorithm is
applied to a minimal DFA.

2.4.5 Using a DFA as a Recognizer

Thus far, we have developed the mechanisms to construct a DFA implemen-
tation from a single RE. To be useful, a compiler’s scanner must recognize
all the syntactic categories that appear in the grammar for the source lan-
guage. What we need, then, is a recognizer that can handle all the REs for the
language’s microsyntax. Given the REs for the various syntactic categories,
r1, 12, 13, ..., I't, We can construct a single RE for the entire collection by
forming (ry | r2 | 73 | ...| ri).

If we run this RE through the entire process, building an NFA, constructing
a DFA to simulate the NFA, minimizing it, and turning that minimal DFA into
executable code, the resulting scanner recognizes the next word that matches
one of the r;’s. That is, when the compiler invokes it on some input, the
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scanner will examine characters one at a time and accept the string if it is in
an accepting state when it exhausts the input. The scanner should return both
the text of the string and its syntactic category, or part of speech. Since most
real programs contain more than one word, we need to transform either the
language or the recognizer.

At the language level, we can insist that each word end with some eas-
ily recognizable delimiter, like a blank or a tab. This idea is deceptively
attractive. Taken literally, it requires delimiters surrounding all operators, as
+, -, (, ), and the comma.

At the recognizer level, we can change the implementation of the DFA and its
notion of acceptance. To find the longest word that matches one of the REs,
the DFA should run until it reaches the point where the current state, s, has no
outgoing transition on the next character. At that point, the implementation
must decide which RE it has matched. Two cases arise; the first is simple. If
s is an accepting state, then the DFA has found a word in the language and
should report the word and its syntactic category.

If s is not an accepting state, matters are more complex. Two cases occur. If
the DFA passed through one or more accepting states on its way to s, the rec-
ognizer should back up to the most recent such state. This strategy matches
the longest valid prefix in the input string. If it never reached an accepting
state, then no prefix of the input string is a valid word and the recognizer
should report an error. The scanners in Section 2.5.1 implement both these
notions.

As a final complication, an accepting state in the DFA may represent several
accepting states in the original NFA. For example, if the lexical specifi-
cation includes REs for keywords as well as an RE for identifiers, then a
keyword such as new might match two REs. The recognizer must decide
which syntactic category to return: identifier or the singleton category for
the keyword new.

Most scanner-generator tools allow the compiler writer to specify a priority
among patterns. When the recognizer matches multiple patterns, it returns
the syntactic category of the highest-priority pattern. This mechanism
resolves the problem in a simple way. The 1ex scanner generator, distributed
with many Unix systems, assigns priorities based on position in the list of
REs. The first RE has highest priority, while the last RE has lowest priority.

As a practical matter, the compiler writer must also specify REs for parts
of the input stream that do not form words in the program text. In most
programming languages, blank space is ignored, but every program contains
it. To handle blank space, the compiler writer typically includes an RE that
matches blanks, tabs, and end-of-line characters; the action on accepting
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blank space is to invoke the scanner, recursively, and return its result. If
comments are discarded, they are handled in a similar fashion.

SECTION REVIEW

Given a regular expression, we can derive a minimal DFA to recognize
the language specified by the RE using the following steps: (1) apply
Thompson's construction to build an NFA for the RE; (2) use the subset
construction to derive a DFA that simulates the behavior of the RE; and
(3) use Hopcroft's algorithm to identify equivalent states in the DFA and
construct a minimal DFA. This trio of constructions produces an efficient
recognizer for any language that can be specified with an RE.

Both the subset construction and the DFA minimization algorithm are
fixed-point computations. They are characterized by repeated applica-
tion of a monotone function to some set; the properties of the domain
play an important role in reasoning about the termination and complex-
ity of these algorithms. We will see more fixed-point computations in
later chapters.

[
Review Questions
1. Consider the RE who | what | where. Use Thompson's construction to
build an NFA from the RE. Use the subset construction to build a DFA
from the NFA. Minimize the DFA.
2. Minimize the following DFA:

2.5 IMPLEMENTING SCANNERS

Scanner construction is a problem where the theory of formal languages has
produced tools that can automate implementation. For most languages, the
compiler writer can produce an acceptably fast scanner directly from a set
of regular expressions. The compiler writer creates an RE for each syntactic
category and gives the RES as input to a scanner generator. The generator
constructs an NFA for each RE, joins them with e-transitions, creates a corre-
sponding DFA, and minimizes the DFA. At that point, the scanner generator
must convert the DFA into executable code.
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Lexi
Loxeal | Scamner | \[ Tables |
Patterns |Generator 1

FA
Interpreter

M FIGURE 2.13 Generating a Table-Driven Scanner.

This section discusses three implementation strategies for converting a DFA
into executable code: a table-driven scanner, a direct-coded scanner, and a
hand-coded scanner. All of these scanners operate in the same manner, by
simulating the DFA. They repeatedly read the next character in the input and
simulate the DFA transition caused by that character. This process stops when
the DFA recognizes a word. As described in the previous section, that occurs
when the current state, s, has no outbound transition on the current input
character.

If s is an accepting state, the scanner recognizes the word and returns a lex-
eme and its syntactic category to the calling procedure. If s is a nonaccepting
state, the scanner must determine whether or not it passed through an accept-
ing state on the way to s. If the scanner did encounter an accepting state, it
should roll back its internal state and its input stream to that point and report
success. If it did not, it should report the failure.

These three implementation strategies, table driven, direct coded, and hand
coded, differ in the details of their runtime costs. However, they all have
the same asymptotic complexity—constant cost per character, plus the cost
of roll back. The differences in the efficiency of well-implemented scanners
change the constant costs per character but not the asymptotic complexity of
scanning.

The next three subsections discuss implementation differences between
table-driven, direct-coded, and hand-coded scanners. The strategies differ
in how they model the DFA’s transition structure and how they simulate
its operation. Those differences, in turn, produce different runtime costs.
The final subsection examines two different strategies for handling reserved
keywords.

2.5.1 Table-Driven Scanners

The table-driven approach uses a skeleton scanner for control and a set
of generated tables that encode language-specific knowledge. As shown in
Figure 2.13, the compiler writer provides a set of lexical patterns, specified



2.5 Implementing Scanners 61

r 0,1,2,...,9 EOIF Other
NextWord()
state < sq: Register Digit Other Other
lexeme <« “7;
clear stack: The Classifier Table, CharCat
push (bad) ;

hil tat d
while (statese) do Register Digit Other

NextChar(char);
lexeme <« lexeme + char; So 51 Se Se
if state €Sy 51 Se 52 Se
then clear stack; 52 Se 52 Se
s s, s, s,
push(state); ¢ ¢ ¢ ¢
cat < CharCatl[char]; The Transition Table, §
state <« §[state,cat];
end;
while(state ¢S4 and So s1 s2 Se

states#bad) do
state <« pop();

truncate lexeme; The Token Type Table, Type
RoT1Back();

end;

invalid invalid register invalid

if state €Sy
then return Typel[statel;
else return invalid;

The Underlying DFA

B FIGURE 2.14 ATable-Driven Scanner for Register Names.

as regular expressions. The scanner generator then produces tables that drive
the skeleton scanner.

Figure 2.14 shows a table-driven scanner for the RE 7 [0...9]", which was
our first attempt at an RE for 1LOC register names. The left side of the
figure shows the skeleton scanner, while the right side shows the tables for
r[0...9]" and the underlying DFA. Notice the similarity between the code
here and the recognizer shown in Figure 2.2 on page 32.

The skeleton scanner divides into four sections: initializations, a scanning
loop that models the DFA’s behavior, a roll back loop in case the DFA over-
shoots the end of the token, and a final section that interprets and reports the
results. The scanning loop repeats the two basic actions of a scanner: read
a character and simulate the DFA’s action. It halts when the DFA enters the
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error state, s.. Two tables, CharCat and &, encode all knowledge about the
DFA. The roll back loop uses a stack of states to revert the scanner to its most
recent accepting state.

The skeleton scanner uses the variable state to hold the current state of
the simulated DFA. It updates state using a two-step, table-lookup process.
First, it classifies char into one of a small set of categories using the Char -
Cat table. The scanner for r [0...9]" has three categories: Register; Digit, or
Other. Next, it uses the current state and the character category as indices
into the transition table, §.

This two-step translation, character to category, then state and category to
new state, lets the scanner use a compressed transition table. The tradeoff
between direct access into a larger table and indirect access into the com-
pressed table is straightforward.A complete table would eliminate the map-

For small examples, suchas (0. ... 9], the ping through CharCat, but would increase the memory footprint of the table.
classifier table is larger than the complete
transition table. In a realistically sized example,
that relationship should be reversed.

The uncompressed transition table grows as the product of the number of
states in the DFA and the number of characters in X; it can grow to the point
where it will not stay in cache.

With a small, compact character set, such as Asci, CharCat can be repre-
sented as a simple table lookup. The relevant portions of CharCat should
stay in the cache. In that case, table compression adds one cache reference
per input character. As the character set grows (e.g. Unicode), more complex
implementations of CharCat may be needed. The precise tradeoff between
the per-character costs of both compressed and uncompressed tables will
depend on properties of both the language and the computer that runs the
scanner.

To provide a character-by-character interface to the input stream, the skele-
ton scanner uses a macro, NextChar, which sets its sole parameter to contain
the next character in the input stream. A corresponding macro, Rol1Back,
moves the input stream back by one character. (Section 2.5.3 looks at
NextChar and Rol1Back.)

If the scanner reads too far, state will not contain an accepting state at
the end of the first while loop. In that case, the second while loop uses the
state trace from the stack to roll the state, lexeme, and input stream back
to the most recent accepting state. In most languages, the scanner’s over-
shoot will be limited. Pathological behavior, however, can cause the scanner
to examine individual characters many times, significantly increasing the
overall cost of scanning. In most programming languages, the amount of
roll back is small relative to the word lengths. In languages where signifi-
cant amounts of roll back can occur, a more sophisticated approach to this
problem is warranted.



2.5 Implementing Scanners 63

Avoiding Excess Roll Back

Some regular expressions can produce quadratic calls to roll back in the
scanner shown in Figure 2.14. The problem arises from our desire to have
the scanner return the longest word that is a prefix of the input stream.

Consider the RE ab | (ab)* c. The corresponding DFA, shown in the margin,
recognizes either ab or any number of occurrences of ab followed by a
final c. On the input string ababababc, a scanner built from the DFA will read
all the characters and return the entire string as a single word. If, however, the
input is abababab, it must scan all of the characters before it can determine
that the longest prefix is ab. On the next invocation, it will scan ababab
to return ab. The third call will scan abab to return ab, and the final call
will simply return ab without any roll back. In the worst, case, it can spend
quadratic time reading the input stream.

Figure 2.15 shows a modification to the scanner in Figure 2.14 that avoids
this problem. It differs from the earlier scanner in three important ways.
First, it has a global counter, InputPos, to record position in the input
stream. Second, it has a bit-array, Failed, to record dead-end transitions
as the scanner finds them. Fai7ed has a row for each state and a column for
each position in the input stream. Third, it has an initialization routine that

NextWord() while(state ¢S4 and state#bad) do
state < so; Failed[state, InputPos] < true;
lTexeme <« “7; (state, InputPos) < pop();
clear stack; truncate lexeme;
push(tbad, bad)); RoT1Back();
while (statess.) do end;

NextChar(char); if state e Sy
InputPos < InputPos + 1; then return TokenTypel[state]:
lexeme <« lexeme + char; else return bad:
if Failed[state, InputPos]

then break;
if state €8y InitializeScanner()

then clear stack; InputPos=0;
push({state, InputPos)); for each state s in the DFA do
cat < CharCat[char]; for i=0 to linput stream| do
state < 8[state,cat]; Failedls,i] « false;

end: end;

end;

M FIGURE 2.15 The Maximal Munch Scanner.



64 CHAPTER 2 Scanners

must be called before NextWord() is invoked. That routine sets InputPos
to zero and sets Failed uniformly to false.

This scanner, called the maximal munch scanner, avoids the pathological
behavior by marking dead-end transitions as they are popped from the stack.
Thus, over time, it records specific (state,input position) pairs that cannot
lead to an accepting state. Inside the scanning loop, the first while loop, the
code tests each (state,input position) pair and breaks out of the scanning loop
whenever a failed transition is attempted.

Optimizations can drastically reduce the space requirements of this scheme.
(See, for example, Exercise 16 on page 82.) Most programming languages
have simple enough microsyntax that this kind of quadratic roll back cannot
occur. If, however, you are building a scanner for a language that can exhibit
this behavior, the scanner can avoid it for a small additional overhead per
character.

Generating the Transition and Classifier Tables

Given a DFA, the scanner generator can generate the tables in a straightfor-
ward fashion. The initial table has one column for every character in the
input alphabet and one row for each state in the DFA. For each state, in order,
the generator examines the outbound transitions and fills the row with the
appropriate states. The generator can collapse identical columns into a single
instance; as it does so, it can construct the character classifier. (Two char-
acters belong in the same class if and only if they have identical columns
in §.) If the DFA has been minimized, no two rows can be identical, so row
compression is not an issue.

Changing Languages

To model another DFA, the compiler writer can simply supply new tables.
Earlier in the chapter, we worked with a second, more constrained spec-
ification for ILOC register names, given by the RE: r([0...2]([0...9]€) |
[4...9]1]1(3(0]1]€))). That RE gave rise to the following DFA:

Because it has more states and transitions than the RE for r[0...9]", we
should expect a larger transition table.
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r 0,1 2 3 4..9 Other
So S1 Se Se  Se Se Se
$1  Se 52 52 Ss Sa Se
S22 Se 53 53 53 53 Se
$3  Se Se Se  Se Se Se
sS4 Se Se Se  Se Se Se
S5 Se S6 Se Se Se Se
S6 Se Se Se  Se Se Se
Se Se Se Se  Se Se Se

As a final example, the minimal DFA for the RE a (b|c)* has the following
table:

a b,c Other

b,c
()
PE—
So 5 Se Se

S1 Se 5 Se

Minimal DFA Transition Table

The character classifier has three classes: a, b or c, and all other characters.

2.5.2 Direct-Coded Scanners

To improve the performance of a table-driven scanner, we must reduce the
cost of one or both of its basic actions: read a character and compute the
next DFA transition. Direct-coded scanners reduce the cost of computing
DFA transitions by replacing the explicit representation of the DFA’s state
and transition graph with an implicit one. The implicit representation sim-
plifies the two-step, table-lookup computation. It eliminates the memory
references entailed in that computation and allows other specializations. The
resulting scanner has the same functionality as the table-driven scanner, but
with a lower overhead per character. A direct-coded scanner is no harder to
generate than the equivalent table-driven scanner.

The table-driven scanner spends most of its time inside the central while
loop; thus, the heart of a direct-coded scanner is an alternate implementa-
tion of that while loop. With some detail abstracted, that loop performs the
following actions:

while (state # s.) do
NextChar(char);
cat < CharCat[char];
state <« 8[state,cat];
end;
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REPRESENTING STRINGS

The scanner classifies words in the input program into a small set of
categories. From a functional perspective, each word in the input stream
becomes a pair (word,type), where word is the actual text that forms the
word and type represents its syntactic category.

For many categories, having both word and type is redundant. The
words +, X, and for have only one spelling. For identifiers, numbers,
and character strings, however, the compiler will repeatedly use the
word. Unfortunately, many compilers are written in languages that lack
an appropriate representation for the word part of the pair. We need
a representation that is compact and offers a fast equality test for two
words.

A common practice to address this problem has the scanner create a sin-
gle hash table (see Appendix B.4) to hold all the distinct strings used in
the input program. The compiler then uses either the string’s index in this
“string table" or a pointer to its stored image in the string table as a proxy
for the string. Information derived from the string, such as the length of
a character constant or the value and type of a numerical constant, can
be computed once and referenced quickly through the table. Since most
computers have storage-efficient representations for integers and point-
ers, this reduces the amount of memory used internally in the compiler.
By using the hardware comparison mechanisms on the integer or pointer
proxies, it also simplifies the code used to compare them.

Notice the variable state that explicitly represents the DFA’s current state
and the tables CharCat and § that represent the DFA’s transition diagram.

Overhead of Table Lookup

For each character, the table-driven scanner performs two table lookups,
one in CharCat and another in §. While both lookups take O(1) time, the
table abstraction imposes constant-cost overheads that a direct-coded scan-
ner can avoid. To access the i/ element of CharCat, the code must compute
its address, given by

@CharCaty + i X w

Detailed discussion of code for array addressing where @CharCatg is a constant related to the starting address of CharCat
starts on page 359 in Section 7.5. in memory and w is the number of bytes in each element of CharCat. After
computing the address, the code must load the data found at that address in

memory.
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Because § has two dimensions, the address calculation is more complex. For
the reference § (state, cat), the code must compute

@5y + (state X number of columns in § + cat) X w

where @4 is a constant related to the starting address of § in memory and
w is the number of bytes per element of §. Again, the scanner must issue a
load operation to retrieve the data stored at this address.

Thus, the table-driven scanner performs two address computations and two
load operations for each character that it processes. The speed improvements
in a direct-coded scanner come from reducing this overhead.

Replacing the Table-Driven Scanner’s While Loop

Rather than represent the current DFA state and the transition diagram explic-
itly, a direct-coded scanner has a specialized code fragment to implement
each state. It transfers control directly from state-fragment to state-fragment
to emulate the actions of the DFA. Figure 2.16 shows a direct-coded scanner

Sinit ¢ lexeme <« 7 Sy : NextChar(char);
clear stack; lexeme < lexeme + char;
push(bad) ; if state €8x
goto sg; then clear stack;
So ¢ NextChar(char); push(state);
Texeme < lexeme + char; if ‘0"<char<'9’
if state €Sy then goto s;:
then clear stack; else goto Soum
push(state); Sour : While (state ¢S4 and
if (char="‘r’) state # bad) do
then goto sy ; state <« pop();
else goto Sout: truncate lexeme;
sy ¢ NextChar(char); endf.?oHBack();
lexeme <« lexeme + char; ’
if state €S8y if state €Sy
then clear stack: then return Type[state];
push(state); else return invalid;

if (‘0’<char<’9’)
then goto sy ;
else goto Sout:

M FIGURE 2.16 A Direct-Coded Scanner for r[0...9] T
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for r[0...9]T; it is equivalent to the table-driven scanner shown earlier in
Figure 2.14.

Consider the code for state s;. It reads a character, concatenates it onto the
current word, and advances the character counter. If char is a digit, it jumps
to state sp. Otherwise, it jumps to state s, . The code requires no compli-
cated address calculations. The code refers to a tiny set of values that can be
kept in registers. The other states have equally simple implementations.

The code in Figure 2.16 uses the same mechanism as the table-driven scan-
ner to track accepting states and to roll back to them after an overrun.
Because the code represents a specific DFA, we could specialize it further. In
particular, since the DFA has just one accepting state, the stack is unneeded
and the transitions to s,,+ from sg and s; can be replaced with report
failure.In a DFA where some transition leads from an accepting state to a
nonaccepting state, the more general mechanism is needed.

A scanner generator can directly emit code similar to that shown in
Figure 2.16. Each state has a couple of standard assignments, followed by
branching logic that implements the transitions out of the state. Unlike the
table-driven scanner, the code changes for each set of REs. Since that code
is generated directly from the REs, the difference should not matter to the
compiler writer.

Code in the style of Figure 2.16 is often called Of course, the generated code violates many of the precepts of structured
spaghetti code in honor of its tangled control programming. While small examples may be comprehensible, the code for
flow. a complex set of regular expressions may be difficult for a human to fol-

low. Again, since the code is generated, humans should not need to read
or debug it. The additional speed obtained from direct coding makes it an
attractive option, particularly since it entails no extra work for the compiler
writer. Any extra work is pushed into the implementation of the scanner
generator.

Classifying Characters

The continuing example, r [0... 9], divides the alphabet of input characters
into just four classes. An r falls in class Register. The digits 0, 1, 2, 3, 4, 5, 6,
7, 8, and 9 fall in class Digit, the special character returned when NextChar
exhausts its input falls in class EndOfFile, and anything else falls in class

Other.
Collating sequence The scanner can easily and efficiently classify a given character, as shown
the "sorting order” of the charactersin an in Figure 2.16. State sy uses a direct test on ‘r’ to determine if char is
alphabet, determined by the integers assigned in Register. Because all the other classes have equivalent actions in the

each character DFA, the scanner need not perform further tests. States s; and s classify
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char into either Digit or anything else. They capitalize on the fact that the
digits 0 through 9 occupy adjacent positions in the asciI collating sequence,
corresponding to the integers 48 to 57.

In a scanner where character classification is more involved, the translation-
table approach used in the table-driven scanner may be less expensive than
directly testing characters. In particular, if a class contains multiple char-
acters that do not occupy adjacent slots in the collating sequence, a table
lookup may be more efficient than direct testing. For example, a class that
contained the arithmetic operators +, -, *, \, and ~ (43, 45, 42, 48, and
94 in the Ascu sequence) would require a moderately long series of com-
parisons. Using a translation table, such as CharCat in the table-driven
example, might be faster than the comparisons if the translation table stays
in the processor’s primary cache.

2.5.3 Hand-Coded Scanners

Generated scanners, whether table-driven or direct-coded, use a small, con-
stant amount of time per character. Despite this fact, many compilers use
hand-coded scanners. In an informal survey of commercial compiler groups,
we found that a surprisingly large fraction used hand-coded scanners.
Similarly, many of the popular open-source compilers rely on hand-coded
scanners. For example, the flex scanner generator was ostensibly built to
support the gcc project, but gcc 4.0 uses hand-coded scanners in several of
its front ends.

The direct-coded scanner reduced the overhead of simulating the DFA; the
hand-coded scanner can reduce the overhead of the interfaces between the
scanner and the rest of the system. In particular, a careful implementation
can improve the mechanisms used to read and manipulate characters on
input and the operations needed to produce a copy of the actual lexeme on
output.

Buffering the Input Stream

While character-by-character 1/0 leads to clean algorithmic formulations, the
overhead of a procedure call per character is significant relative to the cost
of simulating the DFA in either a table-driven or a direct-coded scanner. To
reduce the 1/0 cost per character, the compiler writer can use buffered 1/0,
where each read operation returns a longer string of characters, or buffer,
and the scanner then indexes through the buffer. The scanner maintains a
pointer into the buffer. Responsibility for keeping the buffer filled and track-
ing the current location in the buffer falls to NextChar. These operations can
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be performed inline; they are often encoded in a macro to avoid cluttering
the code with pointer dereferences and increments.

The cost of reading a full buffer of characters has two components, a large
fixed overhead and a small per-character cost. A buffer and pointer scheme
amortizes the fixed costs of the read over many single-character fetches.
Making the buffer larger reduces the number of times that the scanner incurs
this cost and reduces the per-character overhead.

Using a buffer and pointer also leads to a simple and efficient implementa-
tion of the Ro77Back operation that occurs at the end of both the generated
scanners. To roll the input back, the scanner can simply decrement the input
pointer. This scheme works as long as the scanner does not decrement the
pointer beyond the start of the buffer. At that point, however, the scanner
needs access to the prior contents of the buffer.

Double buffering In practice, the compiler writer can bound the roll-back distance that a scan-

Ascheme that uses two input buffersinamodulo  ner will need. With bounded roll back, the scanner can simply use two
fashion to provide bounded roll back is often

adjacent buffers and increment the pointer in a modulo fashion, as shown
called double buffering.

below:

Buffer 0 Buffer 1

0 n-1.n f Input Pointer 2n-1

To read a character, the scanner increments the pointer, modulo 2n and
returns the character at that location. To roll back a character, the program
decrements the input pointer, modulo 2x. It must also manage the contents
of the buffer, reading additional characters from the input stream as needed.

Both NextChar and Rol71Back have simple, efficient implementations, as
shown in Figure 2.17. Each execution of NextChar loads a character, incre-
ments the Input pointer, and tests whether or not to fill the buffer. Every n
characters, it fills the buffer. The code is small enough to be included inline,
perhaps generated from a macro. This scheme amortizes the cost of filling
the buffer over n characters. By choosing a reasonable size for n, such as
2048, 4096, or more, the compiler writer can keep the 1/0 overhead low.

Rollback is even less expensive. It performs a test to ensure that the
buffer contents are valid and then decrements the input pointer. Again, the
implementation is sufficiently simple to be expanded inline. (If we used
this implementation of NextChar and RoT71Back in the generated scanners,
Ro11Back would need to truncate the final character away from 7exeme.)
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Char < Buffer[Input]; Input <« 0;
Input < (Input+1) mod 2n; Fence < 0;

fill Buffer[0:n];
if (Input mod n = 0)

then begin; Initialization
fill Buffer[Input: Input+n-1];
Fence <« (Input+n) mod 2n; if (Input = Fence)
end; then signal roll back error;
return Char; Input < (Input-1) mod 2n;
Implementing NextChar Implementing Rol1Back

M FIGURE 2.17 Implementing NextCharand Ro11Back.

As a natural consequence of using finite buffers, Ro77Back has a limited his-
tory in the input stream. To keep it from decrementing the pointer beyond the
start of that context, NextChar and Ro11Back cooperate. The pointer Fence
always indicates the start of the valid context. NextChar sets Fence each
time it fills a buffer. Ro77Back checks Fence each time it tries to decrement
the Input pointer.

After a long series of NextChar operations, say, more than n of them, Ro77 -
Back can always back up at least n characters. However, a sequence of calls
to NextChar and Rol1Back that work forward and backward in the buffer
can create a situation where the distance between Input and Fence is less
than n. Larger values of n decrease the likelihood of this situation arising.
Expected backup distances should be a consideration in selecting the buffer
size, n.

Generating Lexemes

The code shown for the table-driven and direct-coded scanners accumulated
the input characters into a string 7exeme. If the appropriate output for each
syntactic category is a textual copy of the lexeme, then those schemes are
efficient. In some common cases, however, the parser, which consumes the
scanner’s output, needs the information in another form.

For example, in many circumstances, the natural representation for a regis-
ter number is an integer, rather than a character string consisting of an ‘r’
and a sequence of digits. If the scanner builds a character representation,
then somewhere in the interface, that string must be converted to an inte-
ger. A typical way to accomplish that conversion uses a library routine,
such as atoi in the standard C library, or a string-based 1/0 routine, such as
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sscanf. A more efficient way to solve this problem would be to accumulate
the integer’s value one digit at a time.

In the continuing example, the scanner could initialize a variable, Reghum,
to zero in its initial state. Each time that it recognized a digit, it could
multiply Reghum by 10 and add the new digit. When it reached an accept-
ing state, ReghNum would contain the needed value. To modify the scanner
in Figure 2.16, we can delete all statements that refer to Texeme, add
Reghum < 0; to sj,i¢, and replace the occurrences of goto sp in states
s1 and sy with:

begin;
RegNum <« RegNum X 10 + (char - ‘0°);
goto S»;

end;

where both char and ‘0’ are treated as their ordinal values in the Ascu
collating sequence. Accumulating the value this way likely has lower
overhead than building the string and converting it in the accepting state.

For other words, the lexeme is implicit and, therefore, redundant. With
singleton words, such as a punctuation mark or an operator, the syntactic
category is equivalent to the lexeme. Similarly, many scanners recognize
comments and white space and discard them. Again, the set of states that
recognize the comment need not accumulate the lexeme. While the individ-
ual savings are small, the aggregate effect is to create a faster, more compact
scanner.

This issue arises because many scanner generators let the compiler writer
specify actions to be performed in an accepting state, but do not allow
actions on each transition. The resulting scanners must accumulate a
character copy of the lexeme for each word, whether or not that copy is
needed. If compile time matters (and it should), then attention to such minor
algorithmic details leads to a faster compiler.

2.5.4 Handling Keywords

We have consistently assumed that keywords in the input language should
be recognized by including explicit REs for them in the description that
generates the DFA and the recognizer. Many authors have proposed an alter-
native strategy: having the DFA classify them as identifiers and testing each
identifier to determine whether or not it is a keyword.

This strategy made sense in the context of a hand-implemented scanner.
The additional complexity added by checking explicitly for keywords causes
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a significant expansion in the number of DFA states. This added implementa-
tion burden matters in a hand-coded program. With a reasonable hash table
(see Appendix B.4), the expected cost of each lookup should be constant.
In fact, this scheme has been used as a classic application for perfect hash-
ing. In perfect hashing, the implementor ensures, for a fixed set of keys, that
the hash function generates a compact set of integers with no collisions. This
lowers the cost of lookup on each keyword. If the table implementation takes
into account the perfect hash function, a single probe serves to distinguish
keywords from identifiers. If it retries on a miss, however, the behavior can
be much worse for nonkeywords than for keywords.

If the compiler writer uses a scanner generator to construct the recognizer,
then the added complexity of recognizing keywords in the DFA is handled by
the tools. The extra states that this adds consume memory, but not compile
time. Using the DFA mechanism to recognize keywords avoids a table lookup
on each identifier. It also avoids the overhead of implementing a keyword
table and its support functions. In most cases, folding keyword recognition
into the DFA makes more sense than using a separate lookup table.

SECTION REVIEW

Automatic construction of a working scanner from a minimal DFA is
straightforward. The scanner generator can adopt a table-driven
approach, wherein it uses a generic skeleton scanner and language-
specific tables, or it can generate a direct-coded scanner that threads
together a code fragment for each DFA state. In general, the direct-coded
approach produces a faster scanner because it has lower overhead per
character.

Despite the fact that all DFA-based scanners have small constant costs
per characters, many compiler writers choose to hand code a scanner.
This approach lends itself to careful implementation of the interfaces
between the scanner and the I/0 system and between the scanner and
the parser.

|
Review Questions
1. Given the DFA shown to the left, complete the following:

a. Sketch the character classifier that you would use in a table-driven
implementation of this DFA.

b. Build the transition table, based on the transition diagram and
your character classifier.

c. Write an equivalent direct-coded scanner.

Qm@
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2. An alternative implementation might use a recognizer for
(alb|c) (alb|c) (alb|c), followed by a lookup in a table that contains
the three words abc, bca, and cab.

a. Sketch the DFA for this language.

b. Show the direct-coded scanner, including the call needed to
perform keyword lookup.

c. Contrast the cost of this approach with those in question 1 above.

3. What impact would the addition of transition-by-transition actions
have on the DFA-minimization process? (Assume that we have a lin-
guistic mechanism of attaching code fragments to the edges in the
transition graph.)

|

2.6 ADVANCED TOPICS
2.6.1 DFA to Regular Expression

The final step in the cycle of constructions, shown in Figure 2.3, is to
construct an RE from a DFA. The combination of Thompson’s construction
and the subset construction provide a constructive proof that DFAs are at
least as powerful as REs. This section presents Kleene’s construction, which
builds an RE to describe the set of strings accepted by an arbitrary DFA. This
algorithm establishes that REs are at least as powerful as DFAs. Together, they
show that REs and DFAs are equivalent.

Consider the transition diagram of a DFA as a graph with labelled edges.
The problem of deriving an RE that describes the language accepted by the
DFA corresponds to a path problem over the DFA’s transition diagram. The
set of strings in L(DFA) consists of the set of edge labels for every path
from dy to d;, V d; € D 4. For any DFA with a cyclic transition graph, the set
of such paths is infinite. Fortunately, REs have the Kleene closure operator
to handle this case and summarize the complete set of subpaths created by
a cycle.

Figure 2.18 shows one algorithm to compute this path expression. It assumes
that the DFA has states numbered from O to | D| — 1, with dj) as the start state.
It generates an expression that represents the labels along all paths between
two nodes, for each pair of nodes in the transition diagram. As a final step,
it combines the expressions for each path that leaves dy and reaches some
accepting state, d; € D4. In this way, it systematically constructs the path
expressions for all paths.

The algorithm computes a set of expressions, denoted Rg for all the relevant
values of i, j, and k. Rg. is an expression that describes all paths through
the transition graph from state i to state j, without going through a state
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for i = 0 to |D|—1
for j = 0 to |D|—1
Rl.;] = {a|8d;a)=d})
if (i = J) then
-1 —1
Rij = Rij | {e}
for k = 0 to |D|-1
for 1 = 0 to |D|-1
for j = 0 to |D|-1
k _ pk—1,pk—1\% pk—1 k—1
R = Ry (R 'Ry | Ry
_ [D]-1
L= ‘SjE DA R()j

M FIGURE 2.18 Deriving a Regular Expression from a DFA.

numbered higher than k. Here, through means both entering and leaving, so
that R%’ 16 can be nonempty if an edge runs directly from 1 to 16.

Initially, the algorithm places all of the direct paths from i to j in R;l , with  Traditional statements of this algorithm assume
that node names range from 1to n, rather than
from 0 to n— 1. Thus, they place the direct paths
in ).

{e} added to R;; Vifi= Jj- Over successive iterations, it builds up longer paths
to produce Rg. by adding to Rg._l the paths that pass through k on their way
from i to j. Given Rf;’l, the set of paths added by going from k— 1 to k is
exactly the set of paths that run from i to k using no state higher than k — 1,
concatenated with the paths from & to itself that pass through no state higher
than k — 1, followed by the paths from £ to j that pass through no state higher
than k — 1. That is, each iteration of the loop on k adds the paths that pass
through k to each set Rg-_l to produce Rl]j

When the k loop terminates, the various Rf; expressions account for all paths
through the graph. The final step computes the set of paths that start with
dp and end in some accepting state, d; € da, as the alternation of the path
expressions.

2.6.2 Another Approach to DFA Minimization:
Brzozowski’s Algorithm

If we apply the subset construction to an NFA that has multiple paths from
the start state for some prefix, the construction will group the states involved
in those duplicate prefix paths together and will create a single path for that
prefix in the DFA. The subset construction always produces DFAs that have
no duplicate prefix paths. Brzozowski used this observation to devise an
alternative DFA minimization algorithm that directly constructs the minimal
DFA from an NFA.
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(e) Subset the NFA in (d) to Produce the Minimal DFA

M FIGURE 2.19 Minimizing a DFA with Brzozowski's Algorithm.

For an NFA n, let reverse(n) be the NFA obtained by reversing the direction
of all the transitions, making the initial state into a final state, adding a new
initial state, and connecting it to all of the states that were final states in n.
Further, let reachable(n) be a function that returns the set of states and tran-
sitions in n that are reachable from its initial state. Finally, let subset(n) be
the DFA produced by applying the subset construction to n.

Now, given an NFA n, the minimal equivalent DFA is just
reachable( subset( reverse( reachable( subset( reverse(n))) ))).

The inner application of subset and reverse eliminates duplicate suffixes in
the original NFA. Next, reachable discards any states and transitions that are
no longer interesting. Finally, the outer application of the triple, reachable,
subset, and reverse, eliminates any duplicate prefixes in the NFA. (Applying
reverse to a DFA can produce an NFA.)

The example in Figure 2.19 shows the steps of the algorithm on a simple
NFA for the RE abc | be | ad. The NFA in Figure 2.19a is similar to the
one that Thompson’s construction would produce; we have removed the
e-transitions that “glue” together the NFas for individual letters. Figure 2.19b
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shows the result of applying reverse to that NFA. Figure 2.19¢ depicts the DFA
that subset constructs from the reverse of the NFA. At this point, the algo-
rithm applies reachable to remove any unreachable states; our example NFA
has none. Next, the algorithm applies reverse to the DFA, which produces
the NFA in Figure 2.19d. Applying subset to that NFA produces the DFA in
Figure 2.19e. Since it has no unreachable states, it is the minimal DFA for
abc | be | cd.

This technique looks expensive, because it applies subset twice and we know
that subset can construct an exponentially large set of states. Studies of
the running times of various FA minimization techniques suggest, however,
that this algorithm performs reasonably well, perhaps because of specific
properties of the NFa produced by the first application of reachable (subset(
reverse(n))). From a software-engineering perspective, it may be that imple-
menting reverse and reachable is easier than debugging the partitioning
algorithm.

2.6.3 Closure-Free Regular Expressions

One subclass of regular languages that has practical application beyond
scanning is the set of languages described by closure-free regular expres-
sions. Such REs have the form w;|wy|ws3]|...|w, where the individ-
ual words, w;, are just concatenations of characters in the alphabet, X.
These REs have the property that they produce DFAs with acyclic transition
graphs.

These simple regular languages are of interest for two reasons. First, many
pattern recognition problems can be described with a closure-free RE. Exam-
ples include words in a dictionary, URLS that should be filtered, and keys to a
hash table. Second, the DFA for a closure-free RE can be built in a particularly
efficient way.

To build the DFA for a closure-free RE, begin with a start state so. To add
a word to the existing DFA, the algorithm follows the path for the new
word until it either exhausts the pattern or finds a transition to s.. In the
former case, it designates the final state for the new word as an accepting
state. In the latter, it adds a path for the new word’s remaining suffix. The
resulting DFA can be encoded in tabular form or in direct-coded form (see
Section 2.5.2). Either way, the recognizer uses constant time per character in
the input stream.

In this algorithm, the cost of adding a new word to an existing DFA is
proportional to the length of the new word. The algorithm also works
incrementally; an application can easily add new words to a DFA that is
in use. This property makes the acyclic DFA an interesting alternative for
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implementing a perfect hash function. For a small set of keys, this technique
produces an efficient recognizer. As the number of states grows (in a direct-
coded recognizer) or as key length grows (in a table-driven recognizer),
the implementation may slow down due to cache-size constraints. At some
point, the impact of cache misses will make an efficient implementation of a
more traditional hash function more attractive than incremental construction
of the acyclic DFA.

The DFAs produced in this way are not guaranteed to be minimal. Consider
the acyclic DFA that it would produce for the REs deed, feed, and seed, shown
to the left. It has three distinct paths that each recognize the suffix eed.
Clearly, those paths can be combined to reduce the number of states and
transitions in the DFA. Minimization will combine states (s, sg, S10), States
(s3, 57, $11), and states (s4, 53, §12) to produce a seven state DFA.

The algorithm builds DFAs that are minimal with regard to prefixes of words
in the language. Any duplication takes the form of multiple paths for the
same suffix.

2.7 CHAPTER SUMMARY AND PERSPECTIVE

The widespread use of regular expressions for searching and scanning is
one of the success stories of modern computer science. These ideas were
developed as an early part of the theory of formal languages and automata.
They are routinely applied in tools ranging from text editors to web filtering
engines to compilers as a means of concisely specifying groups of strings
that happen to be regular languages. Whenever a finite collection of words
must be recognized, DFA-based recognizers deserve serious consideration.

The theory of regular expressions and finite automata has developed techni-
ques that allow the recognition of regular languages in time proportional
to the length of the input stream. Techniques for automatic derivation of
DFAs from REs and for DFA minimization have allowed the construction of
robust tools that generate DFA-based recognizers. Both generated and hand-
crafted scanners are used in well-respected modern compilers. In either case,
a careful implementation should run in time proportional to the length of the
input stream, with a small overhead per character.

B CHAPTER NOTES

Originally, the separation of lexical analysis, or scanning, from syntax anal-
ysis, or parsing, was justified with an efficiency argument. Since the cost
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of scanning grows linearly with the number of characters, and the constant
costs are low, pushing lexical analysis from the parser into a separate
scanner lowered the cost of compiling. The advent of efficient parsing tech-
niques weakened this argument, but the practice of building scanners persists
because it provides a clean separation of concerns between lexical structure
and syntactic structure.

Because scanner construction plays a small role in building an actual com-
piler, we have tried to keep this chapter brief. Thus, the chapter omits many
theorems on regular languages and finite automata that the ambitious reader
might enjoy. The many good texts on this subject can provide a much deeper
treatment of finite automata and regular expressions, and their many useful
properties [194, 232, 315].

Kleene [224] established the equivalence of REs and Fas. Both the Kleene
closure and the DFA to RE algorithm bear his name. McNaughton and Yamada
showed one construction that relates REs to NFAs [262]. The construction
shown in this chapter is patterned after Thompson’s work [333], which
was motivated by the implementation of a textual search command for an
early text editor. Johnson describes the first application of this technology to
automate scanner construction [207]. The subset construction derives from
Rabin and Scott [292]. The DFA minimization algorithm in Section 2.4.4
is due to Hopcroft [193]. It has found application to many different prob-
lems, including detecting when two program variables always have the same
value [22].

The idea of generating code rather than tables, to produce a direct-coded
scanner, appears to originate in work by Waite [340] and Heuring [189].
They report a factor of five improvement over table-driven implementations.
Ngassam et al. describe experiments that characterize the speedups possible
in hand-coded scanners [274]. Several authors have examined tradeoffs in
scanner implementation. Jones [208] advocates direct coding but argues for
a structured approach to control flow rather than the spaghetti code shown
in Section 2.5.2. Brouwer et al. compare the speed of 12 different scan-
ner implementations; they discovered a factor of 70 difference between the
fastest and slowest implementations [59].

The alternative DFA minimization technique presented in Section 2.6.2
was described by Brzozowski in 1962 [60]. Several authors have com-
pared DFA minimization techniques and their performance [328, 344]. Many
authors have looked at the construction and minimization of acyclic DFAs
[112, 343, 345].
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B EXERCISES
Section 2.2 1. Describe informally the languages accepted by the following FAs:

b, —>®0,1

. o EEe-an-

2. Construct an FA accepting each of the following languages:
a. {w € {a, b}* | w starts with ‘a’ and contains ‘baba’ as a substring}
b. {w € {0, 1}* | w contains ‘111” as a substring and does not contain
‘00’ as a substring}
c. {we{a,b,c}*|inw the number of ‘a’s modulo 2 is equal to the
number of ‘b’s modulo 3}

3. Create FAs to recognize (a) words that represent complex numbers and
(b) words that represent decimal numbers written in scientific
notation.

Section 2.3 4. Different programming languages use different notations to represent
integers. Construct a regular expression for each one of the following:

a. Nonnegative integers in C represented in bases 10 and 16.

b. Nonnegative integers in VHDL that may include underscores
(an underscore cannot occur as the first or last character).

c. Currency, in dollars, represented as a positive decimal number
rounded to the nearest one-hundredth. Such numbers begin with
the character $, have commas separating each group of three digits
to the left of the decimal point, and end with two digits to the right
of the decimal point, for example, $8,937.43 and $7,777,777.77.

Hint 5. Write a regular expression for each of the following languages:
Not all the specifications describe regular a. Given an alphabet ¥ = {0, 1}, L is the set of all strings of
languages. alternating pairs of Os and pairs of 1s.
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b. Given an alphabet ¥ = {0, 1}, L is the set of all strings of Os and 1s
that contain an even number of Os or an even number of 1s.

c. Given the lowercase English alphabet, L is the set of all strings in
which the letters appear in ascending lexicographical order.

d. Given an alphabet ¥ = {a, b, c, d}, L is the set of strings xyzwy,
where x and w are strings of one or more characters in X, y is any
single character in X, and z is the character z, taken from outside
the alphabet. (Each string Xxyzwy contains two words xy and wy
built from letters in . The words end in the same letter, y. They
are separated by z.)

e. Given an alphabet ¥ = {4, —, x,+,(,),1d}, L is the set of
algebraic expressions using addition, subtraction, multiplication,
division, and parentheses over ids.

6. Write a regular expression to describe each of the following
programming language constructs:
a. Any sequence of tabs and blanks (sometimes called white space)
b. Comments in the programming language ¢
c¢. String constants (without escape characters)
d. Floating-point numbers

7. Consider the three regular expressions: Section 2.4

(ab | ac)*
(0 | H* 1100 1*
(01 | 10 | 00)* 11

a. Use Thompson’s construction to construct an NFA for each RE.
b. Convert the NFAs to DFAS.
¢. Minimize the DFAs.

8. One way of proving that two REs are equivalent is to construct their
minimized DFAs and then compare them. If they differ only by state
names, then the REs are equivalent. Use this technique to check the
following pairs of REs and state whether or not they are
equivalent.

a. (0 | )* and (0* | 10%)*
b. (ba)* (a* b* | a*) and (ba)* bat (b* | €)

9. In some cases, two states connected by an e-move can be combined.
a. Under what set of conditions can two states connected by an
e-move be combined?
b. Give an algorithm for eliminating e-moves.
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c. How does your algorithm relate to the e-closure function used to
implement the subset construction?

10. Show that the set of regular languages is closed under intersection.

11. The DFA minimization algorithm given in Figure 2.9 is formulated to
enumerate all the elements of P and all of the characters in ¥ on each
iteration of the while loop.

a. Recast the algorithm so that it uses a worklist to hold the sets that
must still be examined.

b. Recast the Sp71it function so that it partitions the set around all of
the characters in X.

c. How does the expected case complexity of your modified
algorithms compare to the expected case complexity of the original
algorithm?

Section 2.5 12. Construct a DFA for each of the following c language constructs, and
then build the corresponding table for a table-driven implementation
for each of them:

a. Integer constants
b. Identifiers
c¢. Comments

13. For each of the DFAs in the previous exercise, build a direct-coded
scanner.

14. This chapter describes several styles of DFA implementations. Another
alternative would use mutually recursive functions to implement a
scanner. Discuss the advantages and disadvantages of such an
implementation.

15. To reduce the size of the transition table, the scanner generator can use
a character classification scheme. Generating the classifier table,
however, seems expensive. The obvious algorithm would require
O(|Z|? - | states|) time. Derive an asymptotically faster algorithm for
finding identical columns in the transition table.

16. Figure 2.15 shows a scheme that avoids quadratic roll back behavior
in a scanner built by simulating a DFA. Unfortunately, that scheme
requires that the scanner know in advance the length of the input
stream and that it maintain a bit-matrix, Failed, of size
|states| X |input|. Devise a scheme that avoids the need to know the
size of the input stream in advance. Can you use the same scheme to
reduce the size of the Failed table in cases where the worst case input
does not occur?
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B CHAPTER OVERVIEW

The parser’s task is to determine if the input program, represented by the
stream of classified words produced by the scanner, is a valid sentence in the
programming language. To do so, the parser attempts to build a derivation
for the input program, using a grammar for the programming language.

This chapter introduces context-free grammars, a notation used to specify
the syntax of programming languages. It develops several techniques for
finding a derivation, given a grammar and an input program.

Keywords: Parsing, Grammar, LL(1), LR(1), Recursive Descent

3.1 INTRODUCTION

Parsing is the second stage of the compiler’s front end. The parser works
with the program as transformed by the scanner; it sees a stream of words
where each word is annotated with a syntactic category (analogous to its part
of speech). The parser derives a syntactic structure for the program, fitting
the words into a grammatical model of the source programming language.
If the parser determines that the input stream is a valid program, it builds a
concrete model of the program for use by the later phases of compilation. If
the input stream is not a valid program, the parser reports the problem and
appropriate diagnostic information to the user.

As a problem, parsing has many similarities to scanning. The formal prob-
lem has been studied extensively as part of formal language theory; that
work forms the theoretical basis for the practical parsing techniques used in
most compilers. Speed matters; all of the techniques that we will study take
time proportional to the size of the program and its representation. Low-
level detail affects performance; the same implementation tradeoffs arise

Engineering a Compiler. DOI: 10.1016/B978-0-12-088478-0.00003-7
Copyright © 2012, Elsevier Inc. All rights reserved.
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in parsing as in scanning. The techniques in this chapter are amenable to
implementation as table-driven parsers, direct-coded parsers, and hand-
coded parsers. Unlike scanners, where hand-coding is common, tool-
generated parsers are more common than hand-coded parsers.

Conceptual Roadmap

The primary task of the parser is to determine whether or not the input pro-
gram is a syntactically valid sentence in the source language. Before we can
build parsers that answer this question, we need both a formal mechanism
for specifying the syntax of the source language and a systematic method of
determining membership in this formally specified language. By restricting
the form of the source language to a set of languages called context-free lan-
guages, we can ensure that the parser can efficiently answer the membership
question. Section 3.2 introduces context-free grammars (CFGS) as a notation
for specifying syntax.

Many algorithms have been proposed to answer the membership question
for crGs. This chapter examines two different approaches to the problem.
Section 3.3 introduces top-down parsing in the form of recursive-descent
parsers and LL(1) parsers. Section 3.4 examines bottom-up parsing as
exemplified by LR(1) parsers. Section 3.4.2 presents the detailed algorithm
for generating canonical LR(1) parsers. The final section explores several
practical issues that arise in parser construction.

Overview

A compiler’s parser has the primary responsibility for recognizing syntax—
that is, for determining if the program being compiled is a valid sentence in
the syntactic model of the programming language. That model is expressed
as a formal grammar G; if some string of words s is in the language defined
by G we say that G derives s. For a stream of words s and a grammar G,
the parser tries to build a constructive proof that s can be derived in G—a

Parsing process called parsing.
given a stream s of words and a grammar G, find ) ) ) .
a derivation in G that produces s Parsing algorithms fall into two general categories. Top-down parsers try

to match the input stream against the productions of the grammar by pre-
dicting the next word (at each point). For a limited class of grammars,
such prediction can be both accurate and efficient. Bottom-up parsers work
from low-level detail—the actual sequence of words—and accumulate con-
text until the derivation is apparent. Again, there exists a restricted class of
grammars for which we can generate efficient bottom-up parsers. In prac-
tice, these restricted sets of grammars are large enough to encompass most
features of interest in programming languages.
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3.2 EXPRESSING SYNTAX

The task of the parser is to determine whether or not some stream of words
fits into the syntax of the parser’s intended source language. Implicit in this
description is the notion that we can describe syntax and check it; in practice,
we need a notation to describe the syntax of languages that people might use
to program computers. In Chapter 2, we worked with one such notation,
regular expressions. They provide a concise notation for describing syntax
and an efficient mechanism for testing the membership of a string in the
language described by an RE. Unfortunately, REs lack the power to describe
the full syntax of most programming languages.

For most programming languages, syntax is expressed in the form of a
context-free grammar. This section introduces and defines CFGs and explores
their use in syntax-checking. It shows how we can begin to encode meaning
into syntax and structure. Finally, it introduces the ideas that underlie the
efficient parsing techniques described in the following sections.

3.2.1 Why Not Regular Expressions?

To motivate the use of CFGs, consider the problem of recognizing algebraic
expressions over variables and the operators +, -, X, and +. We can define
“variable” as any string that matches the RE [a...z]([@...z]|[0...9])*, a
simplified, lowercase version of an Algol identifier. Now, we can define an
expression as follows:

l[a...zl1([a...2]][0...9D* ((+]-|x|+) la...z]([a...2]|[0...9D)™)*

This RE matches “a+bxc” and “fee+fieXfoe”. Nothing about the RE
suggests a notion of operator precedence; in “a +b X c,” which operator exe-
cutes first, the + or the X ? The standard rule from algebra suggests x and +
have precedence over + and -. To enforce other evaluation orders, normal
algebraic notation includes parentheses.

Adding parentheses to the RE in the places where they need to appear is
somewhat tricky. An expression can start with a ‘(’, so we need the option ~ We will underline (and ) so that they are visually

for an initial (. Similarly, we need the option for a final ). distinct from the (and ) used for groupingin Rés.

(£|e) [a...z]([a...2] | [O...9])*
(+1-1x] %) [a...zl ([a... 2] [ [0...9D* )* () le)

This RE can produce an expression enclosed in parentheses, but not one
with internal parentheses to denote precedence. The internal instances of
( all occur before a variable; similarly, the internal instances of ) all occur
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Context-free grammar
Foralanguage L, its cr6 defines the sets of strings
of symbols that are valid sentences in L.

Sentence
a string of symbols that can be derived from the
rules of a grammar

Production
Eachruleina cre is called a production.

Nonterminal symbol
a syntactic variable used in a grammar’s
productions

Terminal symbol
aword that can occur in a sentence

A word consists of a lexeme and its syntactic
category. Words are represented in a grammar by
their syntactic category

after a variable. This observation suggests the following RE:

((le) [a...z] ([a...2] | [O. .. 9]
(1-1x1) la...zl (a... 2] [[0...9D)* () |e) )*

Notice that we simply moved the final ) inside the closure.

This RE matches both “a+bxc” and “(a+b)Xxc.” It will match any cor-
rectly parenthesized expression over variables and the four operators in the
RE. Unfortunately, it also matches many syntactically incorrect expressions,
such as “a+ (bxc” and “a+b)xc).” In fact, we cannot write an RE that
will match all expressions with balanced parentheses. (Paired constructs,
such as begin and end or then and else, play an important role in most
programming languages.) This fact is a fundamental limitation of REs; the
corresponding recognizers cannot count because they have only a finite set
of states. The language (™ )" where m = n is not regular. In principle, DFAs
cannot count. While thegl work well for microsyntax, they are not suitable to
describe some important programming language features.

3.2.2 Context-Free Grammars

To describe programming language syntax, we need a more powerful nota-
tion than regular expressions that still leads to efficient recognizers. The
traditional solution is to use a context-free grammar (CFG). Fortunately,
large subclasses of the CFGs have the property that they lead to efficient
recognizers.

A context-free grammar, G, is a set of rules that describe how to form sen-
tences. The collection of sentences that can be derived from G is called the
language defined by G, denoted G. The set of languages defined by context-
free grammars is called the set of context-free languages. An example may
help. Consider the following grammar, which we call SN:

SheepNoise — baa SheepNoise
| baa

The first rule, or production reads “SheepNoise can derive the word baa
followed by more SheepNoise.” Here SheepNoise is a syntactic variable
representing the set of strings that can be derived from the grammar. We
call such a syntactic variable a nonterminal symbol. Each word in the lan-
guage defined by the grammar is a terminal symbol. The second rule reads
“SheepNoise can also derive the string baa.”

To understand the relationship between the SN grammar and L(SN), we need
to specify how to apply rules in SN to derive sentences in L(SN). To begin,
we must identify the goal symbol or start symbol of SN. The goal symbol
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BACKUS-NAUR FORM

The traditional notation used by computer scientists to represent a
context-free grammar is called Backus-Naur form, or BNF. BNF denoted non-
terminal symbols by wrapping them in angle brackets, like (SheepNoise).

Terminal symbols were underlined. The symbol : := means "derives," and
the symbol | means "also derives." In BNF, the sheep noise grammar
becomes:
(SheepNoise) ::= baa (SheepNoise)
| baa

This is completely equivalent to our grammar SN.

BNF has its origins in the late 1950s and early 1960s [273]. The syntac-
tic conventions of angle brackets, underlining, : :=, and | arose from the
limited typographic options available to people writing language descrip-
tions. (For example, see David Gries' book Compiler Construction for Digital
Computers, which was printed entirely on a standard lineprinter [171].)
Throughout this book, we use a typographically updated form of BNF.
Nonterminals are written in italics. Terminals are written in the type-
writer font.We use the symbol — for "derives."

represents the set of all strings in L(SN). As such, it cannot be one of the
words in the language. Instead, it must be one of the nonterminal symbols
introduced to add structure and abstraction to the language. Since SN has
only one nonterminal, SheepNoise must be the goal symbol.

To derive a sentence, we start with a prototype string that contains just the  Derivation

goal symbol, SheepNoise. We pick a nonterminal symbol, &, in the prototype  a sequence of rewriting steps that begins with
the grammar’s start symbol and ends with a

string, choose a grammar rule, « — B, and rewrite o with 8. We repeat this
sentence in the language

rewriting process until the prototype string contains no more nonterminals,
at which point it consists entirely of words, or terminal symbols, and is a
sentence in the language.

At each point in this derivation process, the string is a collection of terminal

or nonterminal symbols. Such a string is called a sentential form if it occurs  Sentential form

in some step of a valid derivation. Any sentential form can be derived from  astring of symbols that occurs as one step in a
the start symbol in zero or more steps. Similarly, from any sentential form  Valid derivation
we can derive a valid sentence in zero or more steps. Thus, if we begin with

SheepNoise and apply successive rewrites using the two rules, at each step in

the process the string is a sentential form. When we have reached the point

where the string contains only terminal symbols, the string is a sentence

in L(SN).
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CONTEXT-FREE GRAMMARS
Formally, a context-free grammar G is a quadruple (T, NT, S, P) where:

T is the set of terminal symbols, or words, in the language L(G). Ter-
minal symbols correspond to syntactic categories returned by the
scanner.

NT is the set of nonterminal symbols that appear in the productions
of G. Nonterminals are syntactic variables introduced to provide
abstraction and structure in the productions.

S is a nonterminal designated as the goal symbol or start symbol of
the grammar. S represents the set of sentences in L(G).

P isthe set of productions or rewrite rules in G. Each rule in P has the
form NT — (T U NT)T; that is, it replaces a single nonterminal with
a string of one or more grammar symbols.

The sets T and NT can be derived directly from the set of productions, P.
The start symbol may be unambiguous, as in the SheepNoise grammar, or
it may not be obvious, as in the following grammar:

Paren — ( Bracket ) Bracket — [ Paren ]
| ) [ [ ]

In this case, the choice of start symbol determines the shape of the outer
brackets. Using Paren as S ensures that every sentence has an outermost
pair of parentheses, while using Bracket forces an outermost pair of square
brackets. To allow either, we would need to introduce a new symbol Start
and the productions Start— Paren | Bracket.

Some tools that manipulate grammars require that S not appear on the
right-hand side of any production, which makes S easy to discover.

To derive a sentence in SN, we start with the string that consists of one sym-
bol, SheepNoise. We can rewrite SheepNoise with either rule 1 or rule 2. If
we rewrite SheepNoise with rule 2, the string becomes baa and has no further
opportunities for rewriting. The rewrite shows that baa is a valid sentence
in L(SN). The other choice, rewriting the initial string with rule 1, leads to
a string with two symbols: baa SheepNoise. This string has one remaining
nonterminal; rewriting it with rule 2 leads to the string baa baa, which is a
sentence in L(SN). We can represent these derivations in tabular form:

Rule Sentential Form Rule Sentential Form
SheepNoise SheepNoise
2 baa 1 baa SheepNoise
2 baa baa

Rewrite with Rule 2 Rewrite with Rules 1 Then 2
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As a notational convenience, we will use — 1 to mean “derives in one or
more steps.” Thus, SheepNoise — baa and SheepNoise — baa baa.

Rule 1 lengthens the string while rule 2 eliminates the nonterminal Sheep-
Noise. (The string can never contain more than one instance of SheepNoise.)
All valid strings in SN are derived by zero or more applications of rule 1,
followed by rule 2. Applying rule 1 k times followed by rule 2 generates a
string with k + 1 baas.

3.2.3 More Complex Examples

The SheepNoise grammar is too simple to exhibit the power and complexity
of CFGs. Instead, let’s revisit the example that showed the shortcomings of
REs: the language of expressions with parentheses.

1 — ( Expr )

2 |  Expr Op name
3 | name

4 Op — +

5 |-

6 |

7 |

X

Beginning with the start symbol, Expr, we can generate two kinds of sub-
terms: parenthesized subterms, with rule 1, or plain subterms, with rule 2.
To generate the sentence “(a+b)xc”, we can use the following rewrite
sequence (2,6,1,2,4,3), shown on the left. Remember that the grammar
deals with syntactic categories, such as name rather than lexemes such as

a, b,orc.
Expr
Rule Sentential Form ‘/1\‘
Expr Op <name,c>
Expr
2 Expr Op name A/l\ 1
6  Expr X name (  Expr ) X
1 ( Expr ) X name m
2 ( Expr Op name) Xname Expr Op <name,b>
4 ( Expr + name) Xname l l
3 ( name + name) X name
- - <name,a> +
Rightmost Derivation of (a +b ) X ¢ Corresponding Parse Tree

The tree on the right, called a parse tree, represents the derivation as a  Parse tree or syntax tree
graph. a graph that represents a derivation
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This simple CFG for expressions cannot generate a sentence with unbalanced
or improperly nested parentheses. Only rule 1 can generate an open paren-
thesis; it also generates the matching close parenthesis. Thus, it cannot
generate strings such as “a+ (bxc” or “a+b ) Xc),” and a parser built from
the grammar will not accept the such strings. (The best RE in Section 3.2.1
matched both of these strings.) Clearly, CFGs provide us with the ability to
specify constructs that REs do not.

Rightmost derivation The derivation of (a+b) X c rewrote, at each step, the rightmost remaining
aderivation that rewrites, at each step, the nonterminal symbol. This systematic behavior was a choice; other choices
rightmost nonterminal are possible. One obvious alternative is to rewrite the leftmost nonterminal

at each step. Using leftmost choices would produce a different deriva-
Leftmost derivation tion sequence for the same sentence. The leftmost derivation of (a+b)Xxc
a derivation that rewrites, at each step, the would be:
leftmost nonterminal

Expr

Rule Sentential Form A

Expr Op <name,c>
Expr

Expr Op name A l

( Expr ) Op name ( Expr ) x
( Expr Op name ) Op name
(name Op name ) Op name Expr Op <name,b>
(name + name ) Op name 1 1

(name + name ) X name

A A W N =N

<{name,a> +

Leftmost Derivation of (a +b ) x ¢ Corresponding Parse Tree

The leftmost and rightmost derivations use the same set of rules; they apply
those rules in a different order. Because a parse tree represents the rules
applied, but not the order of their application, the parse trees for the two
derivations are identical.

From the compiler’s perspective, it is important that each sentence in the
language defined by a CFG has a unique rightmost (or leftmost) derivation.
If multiple rightmost (or leftmost) derivations exist for some sentence, then,
at some point in the derivation, multiple distinct rewrites of the rightmost
(or leftmost) nonterminal lead to the same sentence. A grammar in which
multiple rightmost (or leftmost) derivations exist for a sentence is called an
Ambiguity ambiguous grammar. An ambiguous grammar can produce multiple deriva-

Agrammar G is ambiguous if some sentence in tions and multiple parse trees. Since later stages of translation will associate
L(G) has more than one rightmost (or leftmost)

derat meaning with the detailed shape of the parse tree, multiple parse trees imply
erivation.

multiple possible meanings for a single program—a bad property for a pro-
gramming language to have. If the compiler cannot be sure of the meaning
of a sentence, it cannot translate it into a definitive code sequence.
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The classic example of an ambiguous construct in the grammar for a pro-
gramming language is the if-then-else construct of many Algol-like
languages. The straightforward grammar for if-then-else might be

1 Statement — if Expr then Statement else Statement
2 |  if Expr then Statement

3 |  Assignment

4 | ...other statements ...

This fragment shows that the else is optional. Unfortunately, the code
fragment

if Expry then if Expry then Assignment| else Assignment;
has two distinct rightmost derivations. The difference between them is

simple. The first derivation has Assignment, controlled by the inner
if, so Assignment; executes when Expr; is true and Expr; is false:

Statement
if Expry then Statement

if Expr, then Statement else Statement

| |

Assignment, Assignment,

The second derivation associates the else clause with the first if, so that
Assignment, executes when Expr; is false, independent of the value of

Expry:
Statement
if Expr, then Statement else Statement

J

if Expr, then Statement  Assignment,

Assignment,

Clearly, these two derivations produce different behaviors in the compiled
code.
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To remove this ambiguity, the grammar must be modified to encode a
rule that determines which if controls an else. To fix the if-then-else
grammar, we can rewrite it as

1 Statement — if Expr then Statement

2 | if Expr then WithElse e1se Statement
3 |  Assignment

4 WithElse — if Expr then WithElse else WithElse
5 |  Assignment

The solution restricts the set of statements that can occur in the then part
of an if-then-else construct. It accepts the same set of sentences as the
original grammar, but ensures that each e1se has an unambiguous match to
a specific if. It encodes into the grammar a simple rule—bind each else
to the innermost unclosed if. It has only one rightmost derivation for the

example.
Rule Sentential Form
Statement
1 if Expr then Statement
2 if Expr then if Expr then WithElse e1se Statement
3 if Expr then if Expr then WithElse e1se Assignment
5 if Expr then if Expr then Assignment el se Assignment

The rewritten grammar eliminates the ambiguity.

The if-then-else ambiguity arises from a shortcoming in the original
grammar. The solution resolves the ambiguity in a way by imposing a
rule that is easy for the programmer to remember. (To avoid the ambiguity
entirely, some language designers have restructured the if-then-else con-
struct by introducing elseif and endif.) In Section 3.5.3, we will look at
other kinds of ambiguity and systematic ways of handling them.

3.2.4 Encoding Meaning into Structure

The if-then-else ambiguity points out the relationship between mean-
ing and grammatical structure. However, ambiguity is not the only situation
where meaning and grammatical structure interact. Consider the parse tree
that would be built from a rightmost derivation of the simple expression
atbxec.
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Rule Sentential Form ‘/Exlpr\‘
Expr Expr Op <name,c>
2 Expr Op name m
6 Expr x name }(
2 Expr Op name x name Expr Op <name,b>
4 Expr + name x name 1 1
3 name + name X name <name,a> +
Derivation of a+b x ¢ Corresponding Parse Tree

One natural way to evaluate the expression is with a simple postorder tree-
walk. It would first compute a +b and then multiply that result by c to
produce the result (a+b) x c. This evaluation order contradicts the classic
rules of algebraic precedence, which would evaluate it as a + (b x ¢). Since
the ultimate goal of parsing the expression is to produce code that will imple-
ment it, the expression grammar should have the property that it builds a tree
whose “natural” treewalk evaluation produces the correct result.

The real problem lies in the structure of the grammar. It treats all of the
arithmetic operators in the same way, without any regard for precedence. In
the parse tree for (a+b) x c, the fact that the parenthetic subexpression was
forced to go through an extra production in the grammar adds a level to the
parse tree. The extra level, in turn, forces a postorder treewalk to evaluate
the parenthetic subexpression before it evaluates the multiplication.

We can use this effect to encode operator precedence levels into the gram-
mar. First, we must decide how many levels of precedence are required. In
the simple expression grammar, we have three levels of precedence: highest
precedence for (), medium precedence for x and +, and lowest prece-
dence for + and -. Next, we group the operators at distinct levels and use
a nonterminal to isolate the corresponding part of the grammar. Figure 3.1

0 Goal — Expr

1 Expr — Expr + Term
2 | Expr - Term
3 | Term

4 Term — Term x Factor
5 | Term =+ Factor
6 | Factor

7 Factor — ( Expr )

8 | num

9 | name

M FIGURE 3.1 The Classic Expression Grammar.
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shows the resulting grammar; it includes a unique start symbol, Goal, and a
production for the terminal symbol num that we will use in later examples.

In the classic expression grammar, Expr, represents the level for + and -,
Term represents the level for x and +, and Factor represents the level for ( ).
In this form, the grammar derives a parse tree for a + b x c that is consistent
with standard algebraic precedence, as shown below.

) Expr
Rule Sentential Form m
Expr Expr + Term
1 Expr + Term l /R
4 Expr + Term x Factor
Term Term x  Factor

6 Expr + Term x name

9 Expr + Factor x name 1 1 1

9 Expr + name x name Factor Factor <name, z>
3 Term + name x name l l

6 Factor + name Xx name <{name, x> <name,y>

9 name + name x name

Derivation of a+b x ¢ Corresponding Parse Tree

A postorder treewalk over this parse tree will first evaluate b x ¢ and then
add the result to a. This implements the standard rules of arithmetic prece-
dence. Notice that the addition of nonterminals to enforce precedence adds
interior nodes to the tree. Similarly, substituting the individual operators for
occurrences of Op removes interior nodes from the tree.

Other operations require high precedence. For example, array subscripts
should be applied before standard arithmetic operations. This ensures, for
example, that a+b[i] evaluates b[i] to a value before adding it to a,
as opposed to treating i as a subscript on some array whose location is
computed as a+b. Similarly, operations that change the type of a value,
known as type casts in languages such as C or Java, have higher prece-
dence than arithmetic but lower precedence than parentheses or subscripting
operations.

If the language allows assignment inside expressions, the assignment oper-
ator should have low precedence. This ensures that the code completely
evaluates both the left-hand side and the right-hand side of the assign-
ment before performing the assignment. If assignment (<) had the same
precedence as addition, for example, the expression a < b + ¢ would assign
b’s value to a before performing the addition, assuming a left-to-right
evaluation.



CLASSES OF CONTEXT-FREE GRAMMARS AND THEIR PARSERS

We can partition the universe of context-free grammars into a hierarchy
based on the difficulty of parsing the grammars. This hierarchy has many
levels. This chapter mentions four of them, namely, arbitrary CFGs, LR(1)
grammars, LL(1) grammars, and regular grammars (RGs). These sets nest as

shown in the diagram.

Arbitrary CFGs require more time to K \
parse than the more restricted LR(1) or

LL(1) grammars. For example, Earley’s
algorithm parses arbitrary CFGs in O(n?) LR(1)
time, worst case, where nis the number
of words in the input stream. Of course,
the actual running time may be bet-
ter. Historically, compiler writers have

shied away from "universal"techniques I
because of their perceived inefficiency. \ J

LL(1)

Context-Free

The LR(1) grammars include a large subset of the unambiguous CFGs. LR(1)
grammars can be parsed, bottom-up, in a linear scan from left to right, look-
ing at most one word ahead of the current input symbol. The widespread
availability of tools that derive parsers from LR(1) grammars has made LR(1)
parsers "everyone’s favorite parsers."

The LL(T) grammars are an important subset of the LR(1) grammars. LL(1)
grammars can be parsed, top-down, in a linear scan from left to right,
with a one-word lookahead. LL(1) grammars can be parsed with either a
hand-coded recursive-descent parser or a generated LL(1) parser. Many
programming languages can be written in an LL(1) grammar.

Regular grammars (RGs) are CFGs that generate regular languages. A regu-
lar grammar is a CFG where productions are restricted to two forms, either
A—a or A—aB, where A, Be NT and a € T. Regular grammars are equiva-
lent to regular expressions; they encode precisely those languages that can
be recognized by a DFA. The primary use for regular languages in compiler
construction is to specify scanners.

Almost all programming-language constructs can be expressed in LR(1)
form and, often, in LL(1) form. Thus, most compilers use a fast-parsing
algorithm based on one of these two restricted classes of CFG.

3.2.5 Discovering a Derivation for an Input String

We have seen how to use a CFG G as a rewriting system to generate sen-
tences that are in L(G). In contrast, a compiler must infer a derivation for a
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given input string, or determine that no such derivation exists. The process
of constructing a derivation from a specific input sentence is called parsing.

A parser takes, as input, an alleged program written in some source language.

The parser sees the program as it emerges from the scanner: a stream of
words annotated with their syntactic categories. Thus, the parser would see
a+bxc as (name,a) + (name,b) x (name,c). As output, the parser needs to
produce either a derivation for the input program or an error message for an
invalid program. For an unambiguous language, a parse tree is equivalent to
a derivation; thus, we can think of the parser’s output as a parse tree.

It is useful to visualize the parser as building a syntax tree for the input
program. The parse tree’s root is known; it represents the grammar’s start
symbol. The leaves of the parse tree are known; they must match, in order
from left to right, the stream of words returned by the scanner. The hard part
of parsing lies in discovering the grammatical connection between the leaves
and the root. Two distinct and opposite approaches for constructing the tree
suggest themselves:

1. Top-down parsers begin with the root and grow the tree toward the
leaves. At each step, a top-down parser selects a node for some
nonterminal on the lower fringe of the tree and extends it with a subtree
that represents the right-hand side of a production that rewrites the
nonterminal.

2. Bottom-up parsers begin with the leaves and grow the tree toward the
root. At each step, a bottom-up parser identifies a contiguous substring
of the parse tree’s upper fringe that matches the right-hand side of some
production; it then builds a node for the rule’s left-hand side and
connects it into the tree.

In either scenario, the parser makes a series of choices about which pro-
ductions to apply. Most of the intellectual complexity in parsing lies in
the mechanisms for making these choices. Section 3.3 explores the issues
and algorithms that arise in top-down parsing, while Section 3.4 examines
bottom-up parsing in depth.

3.3 TOP-DOWN PARSING

A top-down parser begins with the root of the parse tree and systemati-
cally extends the tree downward until its leaves match the classified words
returned by the scanner. At each point, the process considers a partially built
parse tree. It selects a nonterminal symbol on the lower fringe of the tree
and extends it by adding children that correspond to the right-hand side of
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some production for that nonterminal. It cannot extend the frontier from a
terminal. This process continues until either

a. the fringe of the parse tree contains only terminal symbols, and the input
stream has been exhausted, or

b. a clear mismatch occurs between the fringe of the partially built parse
tree and the input stream.

In the first case, the parse succeeds. In the second case, two situations are
possible. The parser may have selected the wrong production at some earlier
step in the process, in which case it can backtrack, systematically reconsider-
ing earlier decisions. For an input string that is a valid sentence, backtracking
will lead the parser to a correct sequence of choices and let it construct
a correct parse tree. Alternatively, if the input string is not a valid sen-
tence, backtracking will fail and the parser should report the syntax error to
the user.

One key insight makes top-down parsing efficient: a large subset of the
context-free grammars can be parsed without backtracking. Section 3.3.1
shows transformations that can often convert an arbitrary grammar into
one suitable for backtrack-free top-down parsing. The two sections that fol-
low it introduce two distinct techniques for constructing top-down parsers:
hand-coded recursive-descent parsers and generated LL(1) parsers.

Figure 3.2 shows a concrete algorithm for a top-down parser that con-
structs a leftmost derivation. It builds a parse tree, anchored at the variable
root. It uses a stack, with access functions push( ) and pop( ), to track the
unmatched portion of the fringe.

The main portion of the parser consists of a loop that focuses on the left-
most unmatched symbol on the partially-built parse tree’s lower fringe. If
the focus symbol is a nonterminal, it expands the parse tree downward; it
chooses a production, builds the corresponding part of the parse tree, and
moves the focus to the leftmost symbol on this new portion of the fringe. If
the focus symbol is a terminal, it compares the focus against the next word
in the input. A match moves both the focus to the next symbol on the fringe
and advances the input stream.

If the focus is a terminal symbol that does not match the input, the parser
must backtrack. First, it systematically considers alternatives for the most
recently chosen rule. If it exhausts those alternatives, it moves back up the
parse tree and reconsiders choices at a higher level in the parse tree. If this
process fails to match the input, the parser reports a syntax error. Backtrack-
ing increases the asymptotic cost of parsing; in practice, it is an expensive
way to discover syntax errors.
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root <« node for the start symbol, S;
focus < root;
push(null);

word < NextWord();

while (true) do;
if (focus is a nonterminal) then begin;
pick next rule to expand focus (A — Bi,B2-.-, Bn):
build nodes for Bi,B2...Bn as children of focus;
push(Bp, Bu—1,----B2):
focus <« By:
end;

else if (word matches focus) then begin;
word < NextWord();
focus < pop( )

end;

else if (word = eof and focus = null)
then accept the input and return root ;
else backtrack;
end;

M FIGURE 3.2 A Leftmost, Top-Down Parsing Algorithm.

The implementation of “backtrack” is straightforward. It sets focus to its
parent in the partially-built parse tree and disconnects its children. If an
untried rule remains with focus on its left-hand side, the parser expands
focus by that rule. It builds children for each symbol on the right-hand side,
pushes those symbols onto the stack in right-to-left order, and sets focus

Tofacilitate finding the "next" rule, the parser to point at the first child. If no untried rule remains, the parser moves up
can store the rule number in a nonterminal’s

another level and tries again. When it runs out of possibilities, it reports a
node when it expands that node.

syntax error and quits.

When it backtracks, the parser must also rewind the input stream. Fortu-
nately, the partial parse tree encodes enough information to make this action
efficient. The parser must place each matched terminal in the discarded
production back into the input stream, an action it can take as it discon-
nects them from the parse tree in a left-to-right traversal of the discarded
children.

3.3.1 Transforming a Grammar for Top-Down Parsing

The efficiency of a top-down parser depends critically on its ability to pick
the correct production each time that it expands a nonterminal. If the parser
always makes the right choice, top-down parsing is efficient. If it makes
poor choices, the cost of parsing rises. For some grammars, the worst case
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behavior is that the parser does not terminate. This section examines two
structural issues with CFGs that lead to problems with top-down parsers and
presents transformations that the compiler writer can apply to the grammar
to avoid these problems.

A Top-Down Parser with Oracular Choice

As an initial exercise, consider the behavior of the parser from Figure 3.2
with the classic expression grammar in Figure 3.1 when applied to the string
a+b x c. For the moment, assume that the parser has an oracle that picks the
correct production at each point in the parse. With oracular choice, it might
proceed as shown in Figure 3.3. The right column shows the input string,
with a marker 1 to indicate the parser’s current position in the string. The
symbol — in the rule column represents a step in which the parser matches
a terminal symbol against the input string and advances the input. At each
step, the sentential form represents the lower fringe of the partially-built
parse tree.

With oracular choice, the parser should take a number of steps proportional
to the length of the derivation plus the length of the input. For a +b x c the
parser applied eight rules and matched five words.

Notice, however, that oracular choice means inconsistent choice. In both
the first and second steps, the parser considered the nonterminal Expr. In the
first step, it applied rule 1, Expr — Expr+ Term. In the second step, it applied
rule 3, Expr — Term. Similarly, when expanding Term in an attempt to match
a, it applied rule 6, Term — Factor, but when expanding 7erm to match b,

Rule Sentential Form Input
Expr 1 name + name X name
1 Expr + Term 4 name + name X name
3 Term + Term 4 name + name X name
6 Factor + Term 1t name + name X name
9 name + Term Y name + name X name
— name + Term name 4 + name x name
—  name + Term name + 4 name Xx name
4 name + Term x Factor name + 4 name X name
6 name + Factor x Factor name + 4 name X name
9 name + name x Factor name + 1 name X name
— name + name x Factor name + name 41 x name
— name + name x Factor name + name X 1 name
9 name + name x name name + name x 1 name
— name + name X name name + name x name 4

M FIGURE 3.3 Leftmost, Top-Down Parse of a+b x ¢ with Oracular Choice.
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it applied rule 4, Term — Term x Factor. It would be difficult to make the
top-down parser work with consistent, algorithmic choice when using this
version of the expression grammar.

Eliminating Left Recursion

One problem with the combination of the classic expression grammar and a
leftmost, top-down parser arises from the structure of the grammar. To see
the difficulty, consider an implementation that always tries to apply the rules
in the order in which they appear in the grammar. Its first several actions

would be:
Rule Sentential Form Input
Expr 1+ name + name X name
1 Expr + Term 1 name + name X name
1 Expr + Term + Term 1 name + name X name
1 Y name + name X name

It starts with Expr and tries to match a. It applies rule 1 to create the senten-
tial form Expr+ Term on the fringe. Now, it faces the nonterminal Expr and
the input word a, again. By consistent choice, it applies rule 1 to replace Expr
with Expr+Term. Of course, it still faces Expr and the input word a. With
this grammar and consistent choice, the parser will continue to expand the
fringe indefinitely because that expansion never generates a leading terminal

symbol.
Left recursion This problem arises because the grammar uses left recursion in productions
Aruleina cris left recursive if the first symbol 1, 2, 4, and 5. With left-recursion, a top-down parser can loop indefinitely
onits right-hand side s the symbol onits without generating a leading terminal symbol that the parser can match (and

left-hand side or can derive that symbol. advance the input). Fortunately, we can reformulate a left-recursive grammar

so that it uses right recursion—any recursion involves the rightmost symbol
in a rule.

The former case is called direct left recursion,
while the latter case is called indirect left
recursion.
The translation from left recursion to right recursion is mechanical. For
direct left recursion, like the one shown below to the left, we can rewrite
the individual productions to use right recursion, shown on the right.

Fee — Feea Fee — p Fee
| B Fee! — a Fed
| €

The transformation introduces a new nonterminal, Fee’, and transfers the
recursion onto Fee'. It also adds the rule Fee'—¢, where ¢ represents the
empty string. This e-production requires careful interpretation in the pars-
ing algorithm. To expand the production Fee’—¢, the parser simply sets
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focus < pop( ), which advances its attention to the next node, terminal
or nonterminal, on the fringe.

In the classic expression grammar, direct left recursion appears in the
productions for both Expr and Term.

Original Transformed
Expr — Expr+ Term Expr — Term Expr’
| Expr - Term Expr’ — + Term Expr’
| Term | - Term Expr’
| €
Term —  Term x Factor Term  —  Factor Term’
| Term + Factor Term’ — X Factor Term’
| Factor | =+ Factor Term’
| €

Plugging these replacements back into the classic expression grammar yields
aright-recursive variant of the grammar, shown in Figure 3.4. It specifies the
same set of expressions as the classic expression grammar.

The grammar in Figure 3.4 eliminates the problem with nontermination. It
does not avoid the need for backtracking. Figure 3.5 shows the behavior of
the top-down parser with this grammar on the input a +b x c. The example
still assumes oracular choice; we will address that issue in the next subsec-
tion. It matches all 5 terminals and applies 11 productions—3 more than it
did with the left-recursive grammar. All of the additional rule applications
involve productions that derive €.

This simple transformation eliminates direct left recursion. We must also
eliminate indirect left recursion, which occurs when a chain of rules such as
a— B, B—y, and y—ad creates the situation that o— T«8. Such indirect
left recursion is not always obvious; it can be obscured by a long chain of

productions.
0 Goal — Expr 6 Term’ — X Factor Term’
1 Expr — Term Expr’ 7 | = Factor Term’
2 Expr’ — + Term Expr’ 8 | €
3 | - Term Expr’ 9 Factor — ( Expr )
4 | € 10 | num
S Term — Factor Term’ 11 | name

M FIGURE 3.4 Right-Recursive Variant of the Classic Expression Grammar.
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Rule Sentential Form Input
Expr 4+ name + name x name
1 Term Expr’ 4+ name + name x name
5  Factor Term’ Expr’ 4 name + name X name
1 name Term' Expr’ 1A name + name X name
—  name Term’ Expr’ name 4 + name x name
8 name Expr’ name 4 + name x name
2 name + Term Expr’ name 4 + name Xx name
—  name + Term Expr’ name + 4 name X name
5 name + Factor Term’ Expr’ name + 4 name X name
1 name + name Term’ Expr’ name + 4 name x name
— name + name Term’ Expr’ name + name 1 X name
6 name + name x Factor Term’ Expr’ name + name 1 X name
— name + name x Factor Term’ Expr’ name + name x 1 name
11 name + name x name Term’ Expr’ name + name X 1 name
— name + name x name Term’ Expr’ name + name x name 1
8 name + name x name Expr’ name + name x name %
4 name + name X name name + name x name 4

M FIGURE 3.5 Leftmost, Top-Down Parse of a+b x ¢ with the Right-Recursive Expression Grammar.

To convert indirect left recursion into right recursion, we need a more
systematic approach than inspection followed by application of our trans-
formation. The algorithm in Figure 3.6 eliminates all left recursion from a
grammar by thorough application of two techniques: forward substitution to
convert indirect left recursion into direct left recursion and rewriting direct
left recursion as right recursion. It assumes that the original grammar has no
cycles (A =1 A) and no e-productions.

The algorithm imposes an arbitrary order on the nonterminals. The outer
loop cycles through the nonterminals in this order. The inner loop looks
for any production that expands A; into a right-hand side that begins with
A;, for j <i. Such an expansion may lead to an indirect left recursion. To
avoid this, the algorithm replaces the occurrence of A; with all the alternative
right-hand sides for A;. That is, if the inner loop discovers a production
A;j—Ajy, and Aj—81|82|-- - |8, then the algorithm replaces A;— A;y with
a set of productions A;—381y |82y |- -|8ky . This process eventually converts
each indirect left recursion into a direct left recursion. The final step in the
outer loop converts any direct left recursion on A; to right recursion using the
simple transformation shown earlier. Because new nonterminals are added
at the end and only involve right recursion, the loop can ignore them—they
do not need to be checked and converted.
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impose an order on the nonterminals,Aj, Ay, ..., A

for 1 <« 1 to n do;
for j <« 1 to i - 1 do;
if 3 a production Aj—>Ajy
then replace A;j—Ajy with one or more
productions that expand A;
end;
rewrite the productions to eliminate
any direct left recursion on A;
end;

M FIGURE 3.6 Removal of Indirect Left Recursion.

Considering the loop invariant for the outer loop may make this clearer. At
the start of the i outer loop iteration

V k < i, no production expanding Ay has Ay in its rhs, for | < k.

At the end of this process, (i = n), all indirect left recursion has been elimi-
nated through the repetitive application of the inner loop, and all immediate
left recursion has been eliminated in the final step of each iteration.

Backtrack-Free Parsing

The major source of inefficiency in the leftmost, top-down parser arises from
its need to backtrack. If the parser expands the lower fringe with the wrong
production, it eventually encounters a mismatch between that fringe and the
parse tree’s leaves, which correspond to the words returned by the scanner.
When the parser discovers the mismatch, it must undo the actions that built
the wrong fringe and try other productions. The act of expanding, retracting,
and re-expanding the fringe wastes time and effort.

In the derivation of Figure 3.5, the parser chose the correct rule at each
step. With consistent choice, such as considering rules in order of appear-
ance in the grammar, it would have backtracked on each name, first trying
Factor — ( Expr ) and then Factor — num before deriving name. Similarly,
the expansions by rules 4 and 8 would have considered the other alternatives
before expanding to €.

For this grammar, the parser can avoid backtracking with a simple modi-

fication. When the parser goes to select the next rule, it can consider both

the focus symbol and the next input symbol, called the lookahead sym-

bol. Using a one symbol lookahead, the parser can disambiguate all of the  Backtrack-free grammar

choices that arise in parsing the right-recursive expression grammar. Thus, a6 forwhich the leftmost, top-down parser can
we say that the grammar is backtrack free with a lookahead of one symbol. ~ always predict the correct rule with lookahead of

A backtrack-free grammar is also called a predictive grammar. atmost one word



104 CHAPTER 3 Parsers

for each a € (TUeofUe) do;
FIRST(at) < o;
end;

for each A € NT do;
FIRST(A) <« @ ;
end;

while (FIRST sets are still changing) do;
for each pe P, where p has the form A—pB do;
if B 1s B1B2...Bx, where B; e TUNT, then begin;
rhs <— FIRST(By) — {€};
i <« 1;
while (e € FIRST(B;) and i < k-1) do;
rhs <= rhs U (FIRST(Bi+1) —{€}) ;
T« 1+ 1;
end;
end;
if 1 = k and e € FIRST(B)
then rhs < rhs U {€};
FIRST(A) < FIRST(A) U rhs;
end;
end;

M FIGURE 3.7 Computing FIRST Sets for Symbols in a Grammar.

We can formalize the property that makes the right-recursive expression
grammar backtrack free. At each point in the parse, the choice of an expan-
sion is obvious because each alternative for the leftmost nonterminal leads
to a distinct terminal symbol. Comparing the next word in the input stream
against those choices reveals the correct expansion.

FIRST set The intuition is clear, but formalizing it will require some notation. For each
Fora grammar symbol &, FIRST(cr) is the set of grammar symbol «, define the set FIRST(c) as the set of terminal symbols
terminals that can appear at the start of a that can appear as the first word in some string derived from «. The domain
sentence derived from o of FIRST is the set of grammar symbols, T U NT U {€,eof} and its range is
T U{e,eof}. If « is either a terminal, €, or eof, then FIRST(«) has exactly
one member, «. For a nonterminal A, FIRST(A) contains the complete set of
terminal symbols that can appear as the leading symbol in a sentential form

eof occursimplicitly at the end of every derived from A.

Se”te'.“ei“the grammar. Thus, itis in both the Figure 3.7 shows an algorithm that computes the FIRST sets for each sym-
domain and range of FRST. bol in a grammar. As its initial step, the algorithm sets the FIRST sets for the
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simple cases, terminals, €, and eof. For the right-recursive expression gram-
mar shown in Figure 3.4 on page 101, that initial step produces the following
FIRST sets:

num name + - X =+ () eof e

FIRST num name + - x =+ ( ) eof €

Next, the algorithm iterates over the productions, using the FIRST sets for the
right-hand side of a production to derive the FIRST set for the nonterminal on
its left-hand side. This process halts when it reaches a fixed point. For the
right-recursive expression grammar, the FIRST sets of the nonterminals are:

Expr Expr’ Term Term’ Factor

FIRST (, name, num +, -,€¢ (,name,num x,+,e (,name, num

We defined FIRST sets over single grammar symbols. It is convenient to
extend that definition to strings of symbols. For a string of symbols,
s = B1B2B3...Br, we define FIRST(s) as the union of the FIRST sets for
Bi,PB2, ..., By, where B, is the first symbol whose FIRST set does not contain
€, and € € FIRST(s) if and only if it is in the set for each of the B;, 1 <i <k.
The algorithm in Figure 3.7 computes this quantity into the variable rhs.

Conceptually, FIRST sets simplify implementation of a top-down parser. Con-
sider, for example, the rules for Expr’ in the right-recursive expression
grammar:

2 Expr' — + Term Expr’
3 | - Term Expr’
4 | €

When the parser tries to expand an Expr’, it uses the lookahead symbol and
the FIRST sets to choose between rules 2, 3, and 4. With a lookahead of +,
the parser expands by rule 2 because +is in FIRST(+ Term Expr’) and not in
FIRST(- Term Expr’) or FIRST(¢). Similarly, a lookahead of - dictates a choice
of rule 3.

Rule 4, the e-production, poses a slightly harder problem. FIRST(¢€) is just
{e}, which matches no word returned by the scanner. Intuitively, the parser
should apply the € production when the lookahead symbol is not a member
of the FIRST set of any other alternative. To differentiate between legal inputs
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for each Ae NT do;
FOLLOW(A) <« @ ;
end;

FOLLOW(S) <« {eof};

while (FOLLOW sets are still changing) do;
for each peP of the form A— B1Br---Br do;
TRAILER <— FOLLOW(A) ;

for i < k down to 1 do;
if Bie NT then begin;

FOLLOW(B;) < FOLLOW(B;) U TRAILER;

if € € FIRST(B;)

then TRAILER <— TRAILER U (FIRST(8;)) — €);
else TRAILER < FIRST(B;);

end;

else TRAILER <— FIRST(B;); /7 1s {Bi}

end;
end;
end;

M FIGURE 3.8 Computing FOLLOW Sets for Non-Terminal Symbols.

and syntax errors, the parser needs to know which words can appear as the
leading symbol after a valid application of rule 4—the set of symbols that
can follow an Expr’.

FOLLOW set To capture that knowledge, we define the set FOLLow(Expr’) to contain all
Fora nonterminal oz, FOLLOW (cx) contains the of the words that can occur to the immediate right of a string derived from
set of words that can occur immediately after o Expr’. Figure 3.8 presents an algorithm to compute the FOLLOW set for each

in a sentence. . . . .
nonterminal in a grammar; it assumes the existence of FIRST sets. The algo-

rithm initializes each FOLLOw set to the empty set and then iterates over
the productions, computing the contribution of the partial suffixes to the
FOLLOW set of each symbol in each right-hand side. The algorithm halts
when it reaches a fixed point. For the right-recursive expression grammar,
the algorithm produces:

Expr Expr’ Term Term’ Factor

FOLLOW eof,) eof,) eof,+,-,) eof,+,-,) eof,+,-,x,+,)

The parser can use FOLLOW(Expr’) when it tries to expand an Expr’. If the
lookahead symbol is +, it applies rule 2. If the lookahead symbol is -, it
applies rule 3. If the lookahead symbol is in FOLLOW(Expr’), which contains
eof and ), it applies rule 4. Any other symbol causes a syntax error.
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Using FIRST and FOLLOW, we can specify precisely the condition that makes
a grammar backtrack free for a top-down parser. For a production A — S,
define its augmented FIRST set, FIRST™, as follows:

FIRST(S) if € ¢ FIRST(B)

FIRSTT (A—p) = .
FIRST(S) U FOLLOW(A) otherwise

Now, a backtrack-free grammar has the property that, for any nonterminal A
with multiple right-hand sides, A— 81 | B2 | --- | B

FIRSTT (A—B;) N FIRSTT (A—>B) =0, V 1 <ij<n, i#]
Any grammar that has this property is backtrack free.

For the right-recursive expression grammar, only productions 4 and 8 have
FIRST" sets that differ from their FIRST sets.

Production FIRST set FIRSTT set
4  Expr'— e {e} {e,eof, )}
8 Term' — ¢ {e} {e,eof ,+,-,)}

Applying the backtrack-free condition pairwise to each set of alternate right-
hand sides proves that the grammar is, indeed, backtrack free.

Left-Factoring to Eliminate Backtracking

Not all grammars are backtrack free. For an example of such a gram-
mar, consider extending the expression grammar to include function calls,
denoted with parentheses, ( and ), and array-element references, denoted
with square brackets, [ and ]. To add these options, we replace produc-
tion 11, Factor — name, with a set of three rules, plus a set of right-recursive
rules for argument lists.

11 Factor — name

12 | name [ ArgList ]

13 |  name ( ArgList )

15 ArgList —  Expr MoreArgs

16 MoreArgs — , Expr MoreArgs
|

17 €

A two-word lookahead would handle this case.
However, for any finite lookahead we can devise
a grammar where that lookahead is insufficient.

Because productions 11, 12, and 13 all begin with name, they have identical
FIRSTT sets. When the parser tries to expand an instance of Factor with a
lookahead of name, it has no basis to choose among 11, 12, and 13. The
compiler writer can implement a parser that chooses one rule and backtracks
when it is wrong. As an alternative, we can transform these productions to
create disjoint FIRST™ sets.
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The following rewrite of productions 11, 12, and 13 describes the same
language but produces disjoint FIRSTT sets:

11  Factor — name Arguments
12 Arguments — [ ArglList ]

13 | (ArgList)

14 | €

The rewrite breaks the derivation of Factor into two steps. The first step
matches the common prefix of rules 11, 12, and 13. The second step recog-

Left factoring nizes the three distinct suffixes: [ Expr 1, ( Expr ) , and €. The rewrite adds

the process of extracting and isolating common a new nonterminal, Arguments, and pushes the alternate suffixes for Fac-

prefixes in a set of productions for into right-hand sides for Arguments. We call this transformation left
factoring.

We can left factor any set of rules that has alternate right-hand sides with a
common prefix. The transformation takes a nonterminal and its productions:

A—apylepal--laBulyvilval-—- 1y
where « is the common prefix and the y;’s represent right-hand sides that
do not begin with «. The transformation introduces a new nonterminal B to
represent the alternate suffixes for o and rewrites the original productions
according to the pattern:

A—=aBlyitlval- 1y
B— BBl 1|Bn

To left factor a complete grammar, we must inspect each nonterminal, dis-
cover common prefixes, and apply the transformation in a systematic way.
For example, in the pattern above, we must consider factoring the right-hand
sides of B, as two or more of the B;’s could share a prefix. The process stops
when all common prefixes have been identified and rewritten.

Left-factoring can often eliminate the need to backtrack. However, some
context-free languages have no backtrack-free grammar. Given an arbitrary
CFG, the compiler writer can systematically eliminate left recursion and
use left-factoring to eliminate common prefixes. These transformations may
produce a backtrack-free grammar. In general, however, it is undecidable
whether or not a backtrack-free grammar exists for an arbitrary context-free
language.

3.3.2 Top-Down Recursive-Descent Parsers

Backtrack-free grammars lend themselves to simple and efficient parsing
with a paradigm called recursive descent. A recursive-descent parser is
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PREDICTIVE PARSERS VERSUS DFAs

Predictive parsing is the natural extension of DFA-style reasoning to parsers.
A DFA transitions from state to state based solely on the next input
character. A predictive parser chooses an expansion based on the next
word in the input stream. Thus, for each nonterminal in the grammar, there
must be a unique mapping from the first word in any acceptable input
string to a specific production that leads to a derivation for that string. The
real difference in power between a DFA and a predictively parsable gram-
mar derives from the fact that one prediction may lead to a right-hand
side with many symbols, whereas in a regular grammar, it predicts only a
single symbol. This lets predictive grammars include productions such as
p— (p), which are beyond the power of a regular expression to describe.
(Recall that a regular expression can recognize (T =* )T, but this does
not specify that the numbers of opening and closing parentheses must
match.)

Of course, a hand-coded, recursive-descent parser can use arbitrary tricks
to disambiguate production choices. For example, if a particular left-hand
side cannot be predicted with a single-symbol lookahead, the parser could
use two symbols. Done judiciously, this should not cause problems.

structured as a set of mutually recursive procedures, one for each non-
terminal in the grammar. The procedure corresponding to nonterminal A
recognizes an instance of A in the input stream. To recognize a nonterminal
B on some right-hand side for A, the parser invokes the procedure corre-
sponding to B. Thus, the grammar itself serves as a guide to the parser’s
implementation.

Consider the three rules for Expr’ in the right-recursive expression grammar:

Production FIRST
2 Expr' — + Term Expr’ {(+)}
3 | - Term Expr’ {-1
4 | € {e,eof,)}

To recognize instances of Expr’, we will create a routine FPrime (). It fol-
lows a simple scheme: choose among the three rules (or a syntax error) based
on the FIRSTT sets of their right-hand sides. For each right-hand side, the
code tests directly for any further symbols.

To test for the presence of a nonterminal, say A, the code invokes the pro-
cedure that corresponds to A. To test for a terminal symbol, such as name, it
performs a direct comparison and, if successful, advances the input stream
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EPrime()
/% Expr' — + Term Expr’ | - Term Expr’ */
if (word =+ or word = -) then begin;
word < NextWord();
if (Term())
then return EPrime();
else return false;
end;
else if (word =) or word = eof) /% Expr' > € */
then return true;
else begin; /* no match */
report a syntax error;
return false;
end;

M FIGURE 3.9 AnImplementationof EPrime ().

by calling the scanner, NextWord(). If it matches an e-production, the code
does not call NextWord(). Figure 3.9 shows a straightforward implementa-
tion of £Prime (). It combines rules 2 and 3 because they both end with the
same suffix, Term Expr’.

The strategy for constructing a complete recursive-descent parser is clear.
For each nonterminal, we construct a procedure to recognize its alternative
right-hand sides. These procedures call one another to recognize nonter-
minals. They recognize terminals by direct matching. Figure 3.10 shows
a top-down recursive-descent parser for the right-recursive version of the
classic expression grammar shown in Figure 3.4 on page 101. The code for
similar right-hand sides has been combined.

For a small grammar, a compiler writer can quickly craft a recursive-descent
parser. With a little care, a recursive-descent parser can produce accurate,
informative error messages. The natural location for generating those mes-
sages is when the parser fails to find an expected terminal symbol—inside
EPrime, TPrime, and Factor in the example.

3.3.3 Table-Driven LL(1) Parsers

Following the insights that underlie the FIRsT™ sets, we can automatically
generate top-down parsers for backtrack-free grammars. The tool constructs
FIRST, FOLLOW, and FIRST™ sets. The FIRST™ sets completely dictate the pars-
ing decisions, so the tool can then emit an efficient top-down parser. The
resulting parser is called an LL(1) parser. The name LL(1) derives from the
fact that these parsers scan their input Left to right, construct a Leftmost
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Main()
/% Goal — Expr */
word < NextWord();
if (Expr())
then if (word = eof )

then report success;
else Fail();

Fail()

report syntax error;
attempt error recovery or exit;

Expr()
/* Expr — Term Expr' */
if (Term())
then return EPrime( );
else Fail();

EPrime( )
/% Expr'— + Term Expr' */
/* Expr'— - Term Expr’ */
if (word =+ or word = -)
then begin;
word < NextWord();
if (Term())
then return EPrime();

else Fail();
end;

else if (word = ) or word = eof)
/% Expr'— € */
then return true;
else Fail();

Term( )
/% Term — Factor Term’ */
if (Factor())
then return TPrime();
else Fail();

M FIGURE 3.10 Recursive-Descent Parser for Expressions.

TPrime()

/% Term’— X Factor Term' */
/% Term'— + Factor Term' */
if (word = x or word = +)
then begin;
word < NextWord();
if (Factor())
then return TPrime();
else Fail();

end;
else if (word = + or word = - or
word = ) or word = eof)

/* Term’— € */
then return true;
else Fail();

Factor()

/* Factor — ( Expr ) */
if (word = () then begin;
word < NextWord();

if (not Expr())
then Fail();

if (word # ) )
then Fail();

word < NextWord();
return true;
end;

/* Factor — num %/
/* Factor — name #*/
else if (word = num or
word = name )
then begin;
word < NextWord();
return true;
end;

else Fail();
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word < NextWord();
push eof onto Stack;
push the start symbol, S, onto Stack;

focus < top of Stack;

loop forever;
if (focus = eof and word = eof)
then report success and exit the loop;

else if (focus € T or focus = eof) then begin;
if focus matches word then begin;
pop Stack;
word < NextWord();
end;

else report an error looking for symbol at top of stack;
end;

else begin; /+ focus is a nonterminal =/
if Table[focus,word] is A — B|Bp---B; then begin;
pop Stack;
for i < k to 1 by -1 do;
if (Bj # €)
then push B; onto Stack;
end;
end;

else report an error expanding focus;
end;
focus < top of Stack;
end;

(a) The Skeleton LL(1) Parser

eof + - X =+ () name num
Goal _- = - — — 0 — 0 0
Expr _- = - - — 1 — 1 1
Expr’ 4 2 3 — — — 4 — —
Term _- - - — — 5 — 5 5
Term’ 8 8 8 6 7 — 8 — —
Factor — — — — — 9 — 11 10

(b) The LL(1) Parse Table for Right-Recursive Expression Grammar

M FIGURE 3.11 An LL(1) Parser for Expressions.
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build FIRST, FOLLOW, and FIRSTT sets;

for each nonterminal A do;
for each terminal w do;
Table[A ,w] < error;
end;
for each production p of the form A— B do;
for each terminal w € FIRSTT (A— B) do;
Table[A ,w] <« p;
end;
if eof € FIRSTT (A— B)
then Table[A ,eof] <« p;
end;
end;

M FIGURE 3.12 (1) Table-Construction Algorithm.

derivation, and use a lookahead of 1 symbol. Grammars that work in an LL(1)
scheme are often called LL(1) grammars. LL(1) grammars are, by definition,
backtrack free.

To build an LL(1) parser, the compiler writer provides a right-recursive,

backtrack-free grammar and a parser generator constructs the actual parser.  Parser generator

The most common implementation technique for an LL(1) parser genera-  atool that builds a parser from specifications,
tor uses a table-driven skeleton parser, such as the one shown at the top of ~ Usuallyagrammarin agur-like notation
Figure 3.11. The parser generator constructs the table, Table, which cod-  Parser generators are also called compiler
ifies the parsing decisions and drives the skeleton parser. The bottom of ~ ©mpilers.

Figure 3.11 shows the LL(1) table for the right-recursive expression grammar

shown in Figure 3.4 on page 101.

In the skeleton parser, the variable focus holds the next grammar symbol
on the partially built parse tree’s lower fringe that must be matched. (focus
plays the same role in Figure 3.2.) The parse table, Table, maps pairs of
nonterminals and lookahead symbols (terminals or eof) into productions.
Given a nonterminal A and a lookahead symbol w, Table[A,w] specifies
the correct expansion.

The algorithm to build Table is straightforward. It assumes that FIRST,
FoLLOW, and FIRSTT sets are available for the grammar. It iterates over the
grammar symbols and fills in Tab7e, as shown in Figure 3.12. If the grammar
meets the backtrack free condition (see page 107), the construction will pro-
duce a correct table in O(| P| x |T'|) time, where P is the set of productions
and T is the set of terminals.

If the grammar is not backtrack free, the construction will assign more than
one production to some elements of Table. If the construction assigns to
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Rule Stack Input
— eof Goal 4+ name + name X name
0 eof Expr 1 name + name x name
1 eof Expr’ Term 4 name + name x name
5 eof Expr’ Term’ Factor 4 name + name x name
11 eof Expr’ Term’ name 1 name + name x name
—  eof Expr’ Term’ name 4 + name x name
8 eof Expr’ name 1 + name x name
2 eof Expr’ Term + name 4 + name x name
—  eof Expr’ Term name + 4 name x name
5 eof Expr’ Term’ Factor name + 4 name x name
11 eof Expr’ Term’ name name + 4 name x name
—  eof Expr’ Term’ name + name 1 x name
6 eof Expr’ Term’ Factor x name + name 1 X name
—  eof Expr’ Term’ Factor name + name x 1 name
11 eof Expr’ Term’ name name + name x 1 name
—  eof Expr’ Term’ name + name x name 1
8 eof Expr’ name + name x name 4
4  eof name + name x name 1

M FIGURE 3.13 Actions of the LL(T) Parserona +b x c.

Table[A,w] multiple times, then two or more alternative right-hand sides
for A have w in their FIRST sets, violating the backtrack-free condition.
The parser generator can detect this situation with a simple test on the two
assignments to Table.

The example in Figure 3.13 shows the actions of the LL(1) expression parser
for the input string a +b x c. The central column shows the contents of the
parser’s stack, which holds the partially completed lower fringe of the parse
tree. The parse concludes successfully when it pops Expr’ from the stack,
leaving eof exposed on the stack and eof as the next symbol, implicitly, in
the input stream.

Now, consider the actions of the LL(1) parser on the illegal input string
x++y, shown in Figure 3.14 on page 115. It detects the syntax error when
it attempts to expand a 7erm with lookahead symbol +. Table[Term,+]
contains “—”, indicating a syntax error.

Alternatively, an LL(]1) parser generator could emit a direct-coded parser,
in the style of the direct-coded scanners discussed in Chapter 2. The
parser generator would build FIRST, FOLLOW, and FIRSTT sets. Next, it
would iterate through the grammar, following the same scheme used by
the table-construction algorithm in Figure 3.12. Rather than emitting table
entries, it would generate, for each nonterminal, a procedure to recognize
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Rule Stack Input
— eof Goal 4 name + + name
0 eof Expr P name + + name
1 eof Expr’ Term 4 name + = name
5 eof Expr’ Term’ Factor 4 name + + name
11 eof Expr’ Term’ name 4 name + + name
—  eof Expr’ Term’ name 4 + = name
8 eof Expr’ name 1 + <+ name
2 eof Expr’ r'rrgrrrgjr name t + + name
syntax error —  eof Expr’iTerm '
at this point i

M FIGURE 3.14 Actions of the LL(1) Parseron x +=y.

each of the possible right-hand sides for that nonterminal. This process
would be guided by the FIRsT™T sets. It would have the same speed and local-
ity advantages that accrue to direct-coded scanners and recursive-descent
parsers, while retaining the advantages of a grammar-generated system, such
as a concise, high-level specification and reduced implementation effort.

SECTION REVIEW

Predictive parsers are simple, compact, and efficient. They can be
implemented in a number of ways, including hand-coded, recursive-
descent parsers and generated LL(1) parsers, either table driven or direct
coded. Because these parsers know, at each pointin the parse, the set of
words that can occur as the next symbol in a valid input string, they can
produce accurate and useful error messages.

Most programming-language constructs can be expressed in a
backtrack-free grammar. Thus, these techniques have widespread
application. The restriction that alternate right-hand sides for a
nonterminal have disjoint FIRSTT sets does not seriously limit the

utility of LL(1) grammars. As we will see in Section 3.5.4, the primary
drawback of top-down, predictive parsers lies in their inability to handle
left recursion. Left-recursive grammars model the left-to-right associa-
tivity of expression operators in a more natural way than right-recursive
grammars.

|
Review Questions
1. To build an efficient top-down parser, the compiler writer must express
the source language in a somewhat constrained form. Explain the
restrictions on the source-language grammar that are required to
make it amenable to efficient top-down parsing.
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2. Name two potential advantages of a hand-coded recursive-descent
parser over a generated, table-driven LL(1) parser, and two advantages
of the LL(1) parser over the recursive-descent implementation.

|

3.4 BOTTOM-UP PARSING

Bottom-up parsers build a parse tree starting from its leaves and working
toward its root. The parser constructs a leaf node in the tree for each word
returned by the scanner. These leaves form the lower fringe of the parse
tree. To build a derivation, the parser adds layers of nonterminals on top
of the leaves in a structure dictated by both the grammar and the partially
completed lower portion of the parse tree.

At any stage in the parse, the partially-completed parse tree represents the
state of the parse. Each word that the scanner has returned is represented by a
leaf. The nodes above the leaves encode all of the knowledge that the parser
has yet derived. The parser works along the upper frontier of this partially-
completed parse tree; that frontier corresponds to the current sentential form
in the derivation being built by the parser.

To extend the frontier upward, the parser looks in the current frontier for a
substring that matches the right-hand side of some production A — . If it
finds B in the frontier, with its right end at k, it can replace 8 with A, to
create a new frontier. If replacing 8 with A at position k is the next step in
Handle a valid derivation for the input string, then the pair (A — B,k) is a handle in

apair, (A— B,k), such that 8 appearsin the the current derivation and the parser should replace 8 with A. This replace-
frontier with its right end at position k and

ment is called a reduction because it reduces the number of symbols on the
replacing B with A is the next step in the parse

frontier, unless | 8| = 1. If the parser is building a parse tree, it builds a node

Reduction for A, adds that node to the tree, and connects the nodes representing 8 as
reducing the frontier of a bottom-up parser by A’s children

A— B replaces 8 with A in the frontier
Finding handles is the key issue that arises in bottom-up parsing. The
techniques presented in the following sections form a particularly efficient
handle-finding mechanism. We will return to this issue periodically through-
out Section 3.4. First, however, we will finish our high-level description of
bottom-up parsers.

The bottom-up parser repeats a simple process. It finds a handle (A — B,k)
on the frontier. It replaces the occurrence of B at k with A. This process
continues until either: (1) it reduces the frontier to a single node that repre-
sents the grammar’s goal symbol, or (2) it cannot find a handle. In the first
case, the parser has found a derivation; if it has also consumed all the words
in the input stream (i.e. the next word is eof), then the parse succeeds. In the
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second case, the parser cannot build a derivation for the input stream and it
should report that failure.

A successful parse runs through every step of the derivation. When a parse
fails, the parser should use the context accumulated in the partial deriva-
tion to produce a meaningful error message. In many cases, the parser can
recover from the error and continue parsing so that it discovers as many
syntactic errors as possible in a single parse (see Section 3.5.1).

The relationship between the derivation and the parse plays a critical role in
making bottom-up parsing both correct and efficient. The bottom-up parser
works from the final sentence toward the goal symbol, while a derivation
starts at the goal symbol and works toward the final sentence. The parser,
then, discovers the steps of the derivation in reverse order. For a derivation:

Goal =yp — Y1 = Y2 = -+ = Vn—1 — VYn = Sentence,

the bottom-up parser discovers y; — y;+1 before it discovers y;_1 — y;. The
way that it builds the parse tree forces this order. The parser must add the
node for y; to the frontier before it can match y;.

The scanner returns classified words in left-to-right order. To reconcile the
left-to-right order of the scanner with the reverse derivation constructed by
the scanner, a bottom-up parser looks for a rightmost derivation. In a right-
most derivation, the leftmost leaf is considered last. Reversing that order
leads to the desired behavior: leftmost leaf first and rightmost leaf last.

At each point, the parser operates on the frontier of the partially constructed
parse tree; the current frontier is a prefix of the corresponding sentential form
in the derivation. Because each sentential form occurs in a rightmost deriva-
tion, the unexamined suffix consists entirely of terminal symbols. When the
parser needs more right context, it calls the scanner.

With an unambiguous grammar, the rightmost derivation is unique. For a
large class of unambiguous grammars, y; 1 can be determined directly from
y; (the parse tree’s upper frontier) and a limited amount of lookahead in the
input stream. In other words, given a frontier y; and a limited number of
additional classified words, the parser can find the handle that takes y; to
¥i—1. For such grammars, we can construct an efficient handle-finder, using
a technique called LR parsing. This section examines one particular flavor of
LR parser, called a table-driven LR(1) parser.

An Lr(1) parser scans the input from left to right to build a rightmost deriva-
tion in reverse. At each step, it makes decisions based on the history of the
parse and a lookahead of, at most, one symbol. The name LR(1) derives
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from these properties: Left-to-right scan, Reverse rightmost derivation, and
1 symbol of lookahead.

Informally, we will say that a language has the Lr(1) property if it can be
parsed in a single left-to-right scan, to build a reverse-rightmost derivation,
using only one symbol of lookahead to determine parsing actions. In prac-
tice, the simplest test to determine if a grammar has the Lr(1) property is to
let a parser generator attempt to build the Lr(1) parser. If that process fails,
the grammar lacks the LR(1) property. The remainder of this section intro-
duces Lr(1) parsers and their operation. Section 3.4.2 presents an algorithm
to build the tables that encode an LR(1) parser.

3.4.1 The LR(1) Parsing Algorithm

The critical step in a bottom-up parser, such as a table-driven LR(1) parser, is
to find the next handle. Efficient handle finding is the key to efficient bottom-
up parsing. An LR(1) parser uses a handle-finding automaton, encoded into
two tables, called Action and Goto. Figure 3.15 shows a simple table-driven
LR(1) parser.

The skeleton LR(1) parser interprets the Action and Goto tables to find suc-
cessive handles in the reverse rightmost derivation of the input string. When
it finds a handle (A — B,k), it reduces B at k to A in the current sentential
form—the upper frontier of the partially completed parse tree. Rather than
build an explicit parse tree, the skeleton parser keeps the current upper fron-
tier of the partially constructed tree on a stack, interleaved with states from
the handle-finding automaton that let it thread together the reductions into
a parse. At any point in the parse, the stack contains a prefix of the current
frontier. Beyond this prefix, the frontier consists of leaf nodes. The variable
word holds the first word in the suffix that lies beyond the stack’s contents;
it is the lookahead symbol.

Using a stack lets the LR(1) parser make the To find the next handle, the LR(1) parser shifts symbols onto the stack until
position, k, in the handle be constant and the automaton finds the right end of a handle at the stack top. Once it has
implicit. a handle, the parser reduces by the production in the handle. To do so, it

pops the symbols in 8 from the stack and pushes the corresponding left-
hand side, A, onto the stack. The Action and Goto tables thread together
shift and reduce actions in a grammar-driven sequence that finds a reverse
rightmost derivation, if one exists.

To make this concrete, consider the grammar shown in Figure 3.16a, which
describes the language of properly nested parentheses. Figure 3.16b shows
the Action and Goto tables for this grammar. When used with the skeleton
LR(1) parser, they create a parser for the parentheses language.
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push $;
push start state, sgo;:
word < NextWord();

while (true) do;
state <« top of stack;

if Action[state,word] = “reduceA— B~ then begin;
pop 2 x|B| symbols;
state <« top of stack;
push A;
push Goto[state, Al;
end;

else if Action[state,word] = “shifts;” then begin;
push word;
push s; ;
word < NextWord();

end;

else if Action[state,word] = “accept”
then break;

else Fail();

end;

report success; /* executed break on “accept” case x/

M FIGURE 3.15 The Skeleton LR(1) Parser.

To understand the behavior of the skeleton LR(1) parser, consider the

29

sequence of actions that it takes on the input string “( )”.

Iteration State word Stack Handle Action
initial — ( $0 — none — —

1 0 ( $0 — none —  shift 3

2 3 ) $0(3 — none —  shift 7

3 7 eof $0(3)7 () reduce 5

4 2 eof $ 0 Pair 2 Pair reduce 3

5 1 eof $ O List 1 List accept

The first line shows the parser’s initial state. Subsequent lines show its state
at the start of the while loop, along with the action that it takes. At the start
of the first iteration, the stack does not contain a handle, so the parser shifts
the lookahead symbol, (, onto the stack. From the Action table, it knows to
shift and move to state 3. At the start of the second iteration, the stack still
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Action Table Goto Table
State eof () List Pair
0 s3 1 2
1 acc s3 4
1 Goal — List 2 r3 r3
2 List — List Pair 3 s6 s7 5
3 | Pair 4 r2 r2
4 Pair — ( Pair ) 5 s8
5 () 6 s6 s10 9
7 r5 r5
8 r4 r4
9 s 11
10 r5
1 r4
(a) Parentheses Grammar (b) Actionand Goto Tables

M FIGURE 3.16 The Parentheses Grammar.

does not contain a handle, so the parser shifts ) onto the stack to build more
context. It moves to state 7.

In the third iteration, the situation has changed. The stack contains a han-

Inan L parser, the handle is always positioned at  dle, (Pair — ( ) ),t, where ¢ is the stack top. The Action table directs the

stacktop and the chain of handles produces a parser to reduce ( ) to Pair. Using the state beneath Pair on the stack, 0, and

reverse rightmost derivation. Pair, the parser moves to state 2 (specified by Goto[0,Pair]). In state 2,
with Pair atop the stack and eof as its lookahead, the parser finds the han-
dle (List — Pair,t) and reduces, which leaves the parser in state 1 (specified
by Goto[0, List]). Finally, in state 1, with List atop the stack and eof as
its lookahead, the parser discovers the handle (Goal — List,t). The Action
table encodes this situation as an accept action, so the parse halts.

This parse required two shifts and three reduces. LrR(1) parsers take time
proportional to the length of the input (one shift per word returned from
the scanner) and the length of the derivation (one reduce per step in the
derivation). In general, we cannot expect to discover the derivation for a
sentence in any fewer steps.

The parser performs six shifts, five reduces, and one accept on this input.
Figure 3.18 shows the state of the partially-built parse tree at the start of
each iteration of the parser’s while loop. The top of each drawing shows an
iteration number and a gray bar that contains the partial parse tree’s upper
frontier. In the LR(1) parser, this frontier appears on the stack.
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Iteration State word Stack Handle Action
initial — ( $0 — none — —
1 0 C $0 — none —  shift 3
2 3 C $0(3 — none —  shift 6
3 6 ) $0(3 (6 — none —  shift 10
4 10 ) $0(3(6) 10 ) reduce 5
5 5 ) $0 (3 Pair 5 — none —  shift 8
6 8 € $0 (3 Pair5)8 ( Pair) reduce4
7 2 ( $ 0 Pair 2 Pair reduce 3
8 1 ( $ 0 List 1 — none —  shift 3
9 3 ) $0List1 (3 — none —  shift 7
10 7 eof $O0Lst1 (3)7 () reduce 5
11 4 eof $ 0 List 1 Pair 4 List Pair ~ reduce 2
12 1 eof $ 0 List 1 List accept

M FIGURE 3.17 States of the Lr(1) Parseron ( ( ) ) ( ).

Handle Finding

The parser’s actions shed additional light on the process of finding handles.
Consider the parser’s actions on the string “( )”, as shown in the table on
page 119. The parser finds a handle in each of iterations 3, 4, and 5. In itera-
tion 3, the frontier of ( ) clearly matches the right-hand side of production 5.
From the Action table, we see that a lookahead of either eof or ( implies
a reduce by production 5. Then, in iteration 4, the parser recognizes that
Fair, followed by a lookahead of either eof or ( constitutes a handle for the
reduction by List — Pair. The final handle of the parse, List with lookahead
of eof in state 1, triggers the accept action.

To understand how the states preserved on the stack change the parser’s
behavior, consider the parser’s actions on our second input string,
“CC 1)) ),”asshown in Figure 3.17. Initially, the parser shifts (, (, and )
onto the stack, in iterations 1 to 3. In iteration 4, the parser reduces by
production 5; it replaces the top two symbols on the stack, ( and ), with
Pair and moves to state 5.

Between these two examples, the parser recognized the string ( ) at stacktop
as a handle three times. It behaved differently in each case, based on the prior
left context encoded in the stack. Comparing these three situations exposes
how the stacked states control the future direction of the parse.

With the first example, ( ), the parser was in s7 with a lookahead of
eof when it found the handle. The reduction reveals sy beneath ( ), and
Goto[sg,Pair 1 is s>. In s, a lookahead of eof leads to another reduction
followed by an accept action. A lookahead of ) in s, produces an error.
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2 « 10 List ( )
}
Pair
3. — T
o e Pair )
Y\
4 ) L2
5 ( Pair 11. List Pair
Y\ } Y\
( ) Pair ( )
( Pair )
6. (  Pair ) Y\
AN [
( )
12. List
7 Pair — T
— ‘\ List Pair
(  Puir ) ' Y\
,/ \ Pair ( )
(O — T
( Pair )
Y\
8 List ( )
'
Pair
— ¢\ 13. Goal
1S Pair ) L
Y\ List
List Pair
} Y\
9. List C Pair )
Pair L Pair l
( Pair ) s )
Y\
)

M FIGURE 3.18 The Sequence of Partial Parse Trees Builtfor ( ( ) ) ( ).
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The second example, ( ( )) ( ), encounters a handle for ( ) twice. The
first handle occurs in iteration 4. The parser is in 519 with a lookahead of ).
It has previously shifted (, (, and ) onto the stack. The Action table indi-
cates “r 5,” so the parser reduces by Pair — (). The reduction reveals s3
beneath ( ) and Gotol[s3,Pair] is ss, a state in which further )’s are legal.
The second time it finds ( ) as a handle occurs in iteration 10. The reduction
reveals 51 beneath () and takes the parser to s4. In s4, a lookahead of either
eof or ( triggers a reduction of List Pair to List, while a lookahead of ) is

an error.

The Action and Goto tables, along with the stack, cause the parser to track
prior left context and let it take different actions based on that context. Thus,
the parser handles correctly each of the three instances in which it found a
handle for ( ). We will revisit this issue when we examine the construction
of Actionand Goto.

Parsing an Erroneous Input String

To see how an Lr(1) parser discovers a syntax error, consider the sequence
of actions that it takes on the string “( ) )”, shown below:

Iteration State word Stack Handle Action
initial — C $0 — none — —
1 0 ( $0 — none —  shift 3
2 3 ) $0(3 — none —  shift 7
3 7 ) $0(3)7 —none— error

The first two iterations of the parse proceed as in the first example, “( )”.
The parser shifts ( and ). In the third iteration of the while loop, it looks at
the Action table entry for state 7 and ). That entry contains neither shift,
reduce, nor accept, so the parser interprets it as an error.

The Lr(1) parser detects syntax errors through a simple mechanism: the
corresponding table entry is invalid. The parser detects the error as soon
as possible, before reading any words beyond those needed to prove the
input erroneous. This property allows the parser to localize the error to a
specific point in the input. Using the available context and knowledge of
the grammar, we can build LrR(1) parsers that provide good diagnostic error
messages.

Using LR Parsers

The key to LR parsing lies in the construction of the Action and Goto tables.
The tables encode all of the legal reduction sequences that can arise in a
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reverse rightmost derivation for the given grammar. While the number of
such sequences is huge, the grammar itself constrains the order in which
reductions can occur.

The compiler writer can build Action and Goto tables by hand. However,
the table-construction algorithm requires scrupulous bookkeeping; it is a
prime example of the kind of task that should be automated and relegated
to a computer. Programs that automate this construction are widely avail-
able. The next section presents one algorithm that can be used to construct
LR(1) parse tables.

With an Lr(1) parser generator, the compiler writer’s role is to define the
grammar and to ensure that the grammar has the LrR(1) property. In practice,
the LRr(1) table generator identifies those productions that are ambiguous or
that are expressed in a way that requires more than one word of lookahead
to distinguish between a shift action and a reduce action. As we study the
table-construction algorithm, we will see how those problems arise, how to
cure them, and how to understand the kinds of diagnostic information that
LR(1) parser generators produce.

Using More Lookahead

The ideas that underlie Lr(1) parsers actually define a family of parsers that
vary in the amount of lookahead that they use. An LR(k) parser uses, at
most, k lookahead symbols. Additional lookahead allows an LR(2) parser
to recognize a larger set of grammars than an LR(1) parsing system. Almost
paradoxically, however, the added lookahead does not increase the set of
languages that these parsers can recognize. LR(1) parsers accept the same set
of languages as Lr(k) parsers for k > 1. The LR(1) grammar for a language
may be more complex than an LR(k) grammar.

3.4.2 Building LR(1) Tables

To construct Action and Goto tables, an LR(1) parser generator builds a
model of the handle-recognizing automaton and uses that model to fill in
the tables. The model, called the canonical collection of sets of LR(1) items,
represents all of the possible states of the parser and the transitions between
those states. It is reminiscent of the subset construction from Section 2.4.3.

To illustrate the table-construction algorithm, we will use two examples.
The first is the parentheses grammar given in Figure 3.16a. It is small
enough to use as a running example, but large enough to exhibit some of
the complexities of the process.
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1 Goal — List
2 List — List Pair

3 | Pair
4 Pair — ( Pair )
5 | C)

Our second example, in Section 3.4.3, is an abstracted version of the clas-
sic if-then-else ambiguity. The table construction fails on this grammar
because of its ambiguity. The example highlights the situations that lead to
failures in the table-construction process.

LR(1) Items

In an LR(1) parser, the Action and Goto tables encode information about the
potential handles at each step in the parse. The table-construction algorithm,
therefore, needs a concrete representation for both handles and potential han-
dles, and their associated lookahead symbols. We represent each potential
handle with an Lr(1) item. An LR(]) item [A— B e y,a] consists of a pro-  LR(1) item

duction A — By; a placeholder, e, that indicates the position of the stacktop ~ [A— B e ¥, al where A— By isa grammar
production, e represents the position of the
parser’s stacktop, and a is a terminal symbol in
the grammar

in the production’s right-hand side; and a specific terminal symbol, a, as a
lookahead symbol.

The table-construction algorithm uses LR(1) items to build a model of the
sets of valid states for the parser, the canonical collection of sets of Lr(1)
items. We designate the canonical collection CC = {ccy,ccy,CCa,...,CCy}.
The algorithm builds CC by following possible derivations in the grammar;
in the final collection, each set cc; in CC contains the set of potential han-
dles in some possible parser configuration. Before we delve into the table
construction, further explanation of Lr(1) items is needed.

For a production A— gy and a lookahead symbol a, the placeholder can
generate three distinct items, each with its own interpretation. In each case,
the presence of the item in some set Cc; in the canonical collection indicates
input that the parser has seen is consistent with the occurrence of an A fol-
lowed by an a in the grammar. The position of e in the item distinguishes
between the three cases.

1. [A—efy,a] indicates that an A would be valid and that recognizing a
next would be one step toward discovering an A. We call such an item a
possibility, because it represents a possible completion for the input
already seen.

2. [A— B e y,a] indicates that the parser has progressed from the state
[A—epBy,a] by recognizing 8. The B is consistent with recognizing
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[Goal — e List,e0f]
[Goal — List e,e0T]

[List — e List Pair,eof] [List — e List Pair,( ]
[List — List @ Pair,eof]  [List — List e Pair,( ]
[List — List Paire,e0f] [List — List Paire,( ]

[List — e Pair,eof ] [List — o Pair,( ]
[List — Pair e,eof ] [List — Paire,( ]
[Pair — e ( Pair ),eof ] [Pair — e ( Pair),)]  [Pair — e ( Pair),(]
[Pair — ( e Pair ) ,eof ] [Pair— (ePair),)]  [Pair— (e Pair),(]
[Pair — ( Paire ),eof ] [Pair— ( Paire),)]  [Pair— ( Paire),(]
[Pair — ( Pair ) e,e0f ] [Pair — ( Pair ) e,)]  [Pair — ( Pair) e,(]

[Pair — e ( ),eof] [Pair — o ( ),(] [Pair — o ( ),)]
[Pair — ( e ),eof] [Pair — ( e ),(] [Pair— (o ),)]
[Pair — () e,e0f] [Pair — () e,(] [Pair— ( ) e,)]

M FIGURE 3.19 LR(1) Items for the Parentheses Grammar.

an A. One valid next step would be to recognize a y. We call such an
item partially complete.

3. [A—Bye,a] indicates that the parser has found B8y in a context where
an A followed by an a would be valid. If the lookahead symbol is a,
then the item is a handle and the parser can reduce 8y to A. Such an
item is complete.

In an LR(1) item, the e encodes some local left context—the portions of
the production already recognized. (Recall, from the earlier examples, that
the states pushed onto the stack encode a summary of the context to the
left of the current LR(1) item—in essence, the history of the parse so far.)
The lookahead symbol encodes one symbol of legal right context. When the
parser finds itself in a state that includes [A— Sy e,a] with a lookahead of a,
it has a handle and should reduce By to A.

Figure 3.19 shows the complete set of LRr(1) items generated by the
parentheses grammar. Two items deserve particular notice. The first,
[Goal — e List,eof], represents the initial state of the parser—Ilooking for
a string that reduces to Goal, followed by eof. Every parse begins in this
state. The second, [Goal — List e,e0f], represents the desired final state of
the parser—finding a string that reduces to Goal, followed by eof. This
item represents every successful parse. All of the possible parses result from
stringing together parser states in a grammar-directed way, beginning with
[Goal — e List,eof] and ending with [Goal — List e,e0f].
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Constructing the Canonical Collection

To build the canonical collection of sets of LR(1) items, CC, a parser gen-
erator must start from the parser’s initial state, [Goal — e List,eof], and
construct a model of all the potential transitions that can occur. The algo-
rithm represents each possible configuration, or state, of the parser as a set
of LR(1) items. The algorithm relies on two fundamental operations on these
sets of LR(1) items: taking a closure and computing a transition.

m  The closure operation completes a state; given some core set of LR(1)
items, it adds to that set any related LR(1) items that they imply. For
example, anywhere that Goal — List is legal, the productions that
derive a List are legal, too. Thus, the item [Goal — e List,eof] implies
both [List — e List Pair,eof] and [List — e Pair,eof]. The closure
procedure implements this function.

m To model the transition that the parser would make from a given state
on some grammar symbol, x, the algorithm computes the set of items
that would result from recognizing an x. To do so, the algorithm selects
the subset of the current set of LR(1) items where e precedes x and
advances the e past the x in each of them. The goto procedure
implements this function.

To simplify the task of finding the goal symbol, we require that the grammar
have a unique goal symbol that does not appear on the right-hand side of any
production. In the parentheses grammar, that symbol is Goal.

The item [Goal — e List,eof] represents the parser’s initial state for the
parentheses grammar; every valid parse recognizes Goal followed by eof.
This item forms the core of the first state in CC, labelled ccy. If the grammar
has multiple productions for the goal symbol, each of them generates an item
in the initial core of ccy.

The closure Procedure

To compute the complete initial state of the parser, cCy, from its core, the
algorithm must add to the core all of the items implied by the items in the
core. Figure 3.20 shows an algorithm for this computation. C7osure iterates
over all the items in set s. If the placeholder e in an item immediately pre-
cedes some nonterminal C, then closure must add one or more items for
each production that can derive C. Closure places the e at the initial position
of each item that it builds this way.

The rationale for closure is clear. If [A—p e C§,a] € s, then a string that
reduces to C, followed by da will complete the left context. Recognizing
a C followed by §a should cause a reduction to A, since it completes the
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closure(s)
while (s is still changing)
for each item [A—>pBe(CéS,ales
for each production C—yeP
for each b eFIRST(§a)
s < s U {[C—ey,b]}
return s

M FIGURE 3.20 The c1osure Procedure.

production’s right-hand side (C§) and follows it with a valid lookahead
symbol.

To build the items for a production C—y, closure inserts the placeholder

before y and adds the appropriate lookahead symbols—each terminal that

can appear as the initial symbol in da. This includes every terminal in
In our experience, this use of FIRsT(8a) is the FIRST(8). If € € FIRST(8), it also includes a. The notation FIRST(§a) in the
point n the process where a human is most to algorithm represents this extension of the FIRST set to a string in this way. If
lkely make a mistake. § is €, this devolves into FIRST(a) ={ a }.

For the parentheses grammar, the initial item is [Goal — e List,eof]. Apply-
ing closure to that set adds the following items:

[List — e List Pair,eof], [List — e List Pair,( ], [List — e Pair,eof],
[List — e Pair,( ], [Pair — e ( Pair ),eof ], [Pair — e ( Pair),(],
[Pair — o ( ),eof] [Pair — e ( ),(]

These eight items, along with [Goal — e List,eof], constitute set CCy in the
canonical collection. The order in which c7osure adds the items will depend
on how the set implementation manages the interaction between the “for
each item” iterator and the set union in the innermost loop.

Closure is another fixed-point computation. The triply-nested loop either
adds items to s or leaves s intact. It never removes an item from s. Since the
set of LR(1) items is finite, this loop must halt. The triply nested loop looks
expensive. However, close examination reveals that each item in s needs to
be processed only once. A worklist version of the algorithm could capitalize
on that fact.

The goto Procedure

The second fundamental operation that the construction uses is the goto
function. Goto takes as input a model of a parser state, represented as a set
CC; in the canonical collection, and a grammar symbol x. It computes, from
cc; and x, a model of the parser state that would result from recognizing an
X in state i.
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goto(s,x)
moved < @
for each itemi € s
if the form of i 1s [a—pBexs, a] then
moved < moved U {[a—Bxe§, a]}

return closure(moved)

M FIGURE 3.21 The goto Function.

The goto function, shown in Figure 3.21, takes a set of Lr(1) items s and
a grammar symbol x and returns a new set of Lr(1) items. It iterates over
the items in s. When it finds an item in which the e immediately precedes
x, it creates a new item by moving the e rightward past x. This new item
represents the parser’s configuration after recognizing x. Goto places these
new items in a new set, takes its closure to complete the parser state, and
returns that new state.

Given the initial set for the parentheses grammar,

[Goal — e List, eof] [List— e List Pair, eof] [List — e List Pair, (]
CCo = 4 [List — e Pair, eof] [List — e Pair, (] [Pair — e ( Pair ), eof]
[Pair — e ( Pair ),(] [Pair — e ( ), eof] [Pair — e ( ),(]

we can derive the state of the parser after it recognizes an initial ( by com-
puting goto(ccy,( ). The inner loop finds four items that have e before (.
Goto creates a new item for each, with the e advanced beyond (. Closure
adds two more items, generated from the items with e before Pair. These
items introduce the lookahead symbol ). Thus, goto(ccy,( ) returns

[Pair — ( e Pair ),eof] [Pair — (e Pair),(] [Pair— (e),e0f]
[Pair — (e),(] [Pair — e ( Pair ),)]  [Pair—e(),)]

To find the set of states that derive directly from some state such as ccy, the
algorithm can compute goto(ccp,x) for each x that occurs after a e in an
item in ccy. This produces all the sets that are one symbol away from ccgp.
To compute the complete canonical collection, we simply iterate this process
to a fixed point.

The Algorithm

To construct the canonical collection of sets of LR(1) items, the algorithm
computes the initial set, cCy, and then systematically finds all of the sets of
LR(1) items that are reachable from ccy. It repeatedly applies goto to the new
sets in CC; goto, in turn, uses cTosure. Figure 3.22 shows the algorithm.

For a grammar with the goal production §'— S, the algorithm begins by
initializing CC to contain ccy, as described earlier. Next, it systematically
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cCy <« closure({[S'—eS,e0f]})
CC <« {ccy}

while (new sets are still being added to CC)

for each unmarked set cc;eCC
mark cc; as processed
for each x following a e in an item in CC;
temp < goto(ccCi,x)
if temp ¢CC
then CC <« CCU{temp}

record transition from cc; to temp on x

M FIGURE 3.22 The Algorithm to Build CC.

extends CC by looking for any transition from a state in CC to a state not
yet in CC. It does this constructively, by building each possible state, temp,
and testing temp for membership in CC. If temp is new, it adds temp to CC.
Whether or not temp is new, it records the transition from cc; to temp for
later use in building the parser’s Goto table.

To ensure that the algorithm processes each set Cc; just once, it uses a simple
marking scheme. It creates each set in an unmarked condition and marks the
set as it is processed. This drastically reduces the number of times that it
invokes goto and closure.

This construction is a fixed-point computation. The canonical collection, CC,
is a subset of the powerset of the LR(1) items. The while loop is monotonic;
it adds new sets to CC and never removes them. If the set of Lr(1) items has
n elements, then CC can grow no larger than 2" items, so the computation
must halt.

This upper bound on the size of CC is quite loose. For example, the paren-
theses grammar has 33 LRr(1) items and produces just 12 sets in CC. The
upper bound would be 233, a much larger number. For more complex gram-
mars, |CC| is a concern, primarily because the Action and Goto tables grow
with |CC|. As described in Section 3.6, both the compiler writer and the
parser-generator writer can take steps to reduce the size of those tables.

The Canonical Collection for the Parentheses Grammar

As a first complete example, consider the problem of building CC
for the parentheses grammar. The initial set, ccp, is computed as
closure([Goal — e List,eof]).
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Iteration Item Goal List Pair ( ) eof
0 CCo % CC; CCp; CC3 ? ]
1 CCy [ [ CCq4 CC3 ] [

CcCy % 1% @ % @ ]
CC3 ] # cCs CCq CCy [
2 CCy % ) @ % @ @
CCs % ) @ ¥ ccg %)
CCq % ] CCy9 CCq CCqp ]
CcC7 % 7} @ @ @ %)
3 CCg ] [ ] ] 9 ]
CCq [ [ ] B ccqy (%)
CCio % ] @ % @ ]
4 CCqy [ [ ] [ ] (%]

M FIGURE 3.23 Trace of the Lr(1) Construction on the Parentheses Grammar.

[Goal — e List, eof] [List — e List Pair, eof]  [List — e List Pair, (]
CCo = 3 [List — e Pair, eof] [List — e Fair, (] [Pair — e ( Pair ), eof]
[Pair — e ( Pair ),(] [Pair — e ( ), eof] [Pair — e ( ),(]

Since each item has the e at the start of its right-hand side, cco contains only
possibilities. This is appropriate, since it is the parser’s initial state. The first
iteration of the whi e loop produces three sets, cC, CCp, and ccs. All of the
other combinations in the first iteration produce empty sets, as indicated in
Figure 3.23, which traces the construction of CC.

goto(ccy, List) is ccy.

[Goal — List e, e0f] [List — List e Pair, eof] [List — List e Pair, (]
cCy = { [Pair — e ( Pair ), eof] [Pair — e ( Pair ), (] [Pair — e (), eof]
[Pair — o (), (]

ccy represents the parser configurations that result from recognizing a List.
All of the items are possibilities that lead to another pair of parentheses,
except for the item [Goal — List e, eof]. It represents the parser’s accept
state—a reduction by Goal — List, with a lookahead of eof.

goto(ccy, Pair) is CCy.
ccy = {[List s Pair e, e0f] [List — Pair s, g}

ccy represents the parser configurations after it has recognized an initial Pair.
Both items are handles for a reduction by List — Pair.
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goto(ceo,() is €C3.

I [Pair — e ( Pair ), )] [Pair — ( e Pair ), eof] [Pair — ( e Pair), (]
3T [Pair — o (),)] [Pair — (@), eof] [Pair — (e ), (]

cc3 represents the parser’s configuration after it recognizes an initial (.
When the parser enters state 3, it must recognize a matching ) at some point
in the future.

The second iteration of the while loop tries to derive new sets from ccy,
CCy, and ccs. Five of the combinations produce nonempty sets, four of which
are new.

goto(ccy, Pair) is cCq.
ccy = {[Lisz > List Pair e, e0f] [List — List Pair e, ( ]}

The left context for this set is cc, which represents a state where the parser
has recognized one or more occurrences of Lisz. When it then recognizes a
Fair, it enters this state. Both items represent a reduction by List — List Pair.

goto(ccy,() is ccsz, which represents the future need to find a matching ).
goto(ccs, Pair) is CCs.
ccs = {[Pair —» (Paire), eof] [Pair— ( Paire ), 7]}

CCs consists of two partially complete items. The parser has recognized a (
followed by a Pair; it now must find a matching ). If the parser finds a ), it
will reduce by rule 4, Pair — ( Pair ).

goto(ccs, () is CCg.

[Pair — o (), )] [Pair — (@), )

{[Pair—> o ( Pair ),)] [Pair — ( e Pair), )]}
CCq = - - -

The parser arrives in CCq when it encounters a ( and it already has at least
one ( on the stack. The items show that either a ( or a ) lead to valid states.

goto(ccs,)) is CCy.
ccy = {[Pair—>£l., eof] [Pair—>£lo,g}

If, in state 3, the parser finds a ), it takes the transition to cc;. Both items
specify a reduction by Pair — ( ).

The third iteration of the while loop tries to derive new sets from ccCq,
CCs, CCg, and ccy. Three of the combinations produce new sets, while one
produces a transition to an existing state.
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goto(ccs,)) is CCg.
ceg = {[Pair—> (Pair) e, e0f] [Pair — ( Pair ) e, g}
When it arrives in state 8, the parser has recognized an instance of rule 4,
Pair — ( Pair ). Both items specify the corresponding reduction.
goto(ccg, Pair) is CCy.
CCy = {[Pair > ( Paire), l]}
In cco, the parser needs to find a ) to complete rule 4.

goto(ccCs, () is CCe. In CCg, another ( will cause the parser to stack another
state 6 to represent the need for a matching ).

goto(ccs,)) is CCyp.
ccip = [[Pair—)ilo,l]]

This set contains one item, which specifies a reduction to Pair.

The fourth iteration of the wh1i1e loop tries to derive new sets from ccg, CCo,
and cCpo. Only one combination creates a nonempty set.

goto(ccy,)) is CCyy.
coy = {[PaireLPairlo,l]}

State 11 calls for a reduction by Pair — ( Pair ).

The final iteration of the while loop tries to derive new sets from cCyj.
It finds only empty sets, so the construction halts with 12 sets, ccy
through ccy;.

Filling in the Tables

Given the canonical collection of sets of LR(1) items for a grammar, the
parser generator can fill in the Action and Goto tables by iterating through
CC and examining the items in each ccje CC. Each cc; becomes a parser
state. Its items generate the nonempty elements of one row of Action; the
corresponding transitions recorded during construction of CC specify the
nonempty elements of Goto. Three cases generate entries in the Action
table:
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1. An item of the form [A— Becy,a] indicates that encountering the
terminal symbol ¢ would be a valid next step toward discovering the
nonterminal A. Thus, it generates a shift item on c in the current state.
The next state for the recognizer is the state generated by computing
goto on the current state with the terminal c. Either 8 or y can be €.

2. Anitem of the form [A— e, a] indicates that the parser has recognized
a @, and if the lookahead is a, then the item is a handle. Thus, it
generates a reduce item for the production A— § on a in the current
state.

3. Anitem of the form [S'— Se,e0f] where S’ is the goal symbol indicates
the accepting state for the parser; the parser has recognized an input
stream that reduces to the goal symbol and the lookahead symbol is eof.
This item generates an accept action on eof in the current state.

Figure 3.24 makes this concrete. For an LR(1) grammar, it should uniquely
define the nonerror entries in the Action and Goto tables.

Notice that the table-filling algorithm essentially ignores items where the e
precedes a nonterminal symbol. Shift actions are generated when e precedes

The table-filling actions can be integrated into a terminal. Reduce and accept actions are generated when e is at the right end

the construction of CC. of the production. What if cc; contains an item [A— 8 e ¥, a], where y €
NT? While this item does not generate any table entries itself, its presence
in the set forces the c7osure procedure to include items that generate table
entries. When closure finds a e that immediately precedes a nonterminal
symbol y, it adds productions that have y as their left-hand side, with a e
preceding their right-hand sides. This process instantiates FIRST(y) in CC;.
The closure procedure will find each x € FIRST(y) and add the items into
CC; to generate shift items for each x.

for each ccjeCC
for each item I € CC;

if I is [A—>pBecy,a] and goto(cc;,c) = cc; then
Actionli,c] <« “shiftj”

else if I is [A—Be,a] then
Actionli,a] < “reduce A—pB"

else if I is [S'—Se,e0f] then
Actionli,eof ] < “accept”

for each ne NT
if goto(cc;,n) = cC; then
Gotoli,n] < j

M FIGURE 3.24 LR(1) Table-Filling Algorithm.
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For the parentheses grammar, the construction produces the Action and
Goto tables shown in Figure 3.16b on page 120. As we saw, combining the
tables with the skeleton parser in Figure 3.15 creates a functional parser for
the language.

In practice, an LR(1) parser generator must produce other tables needed by
the skeleton parser. For example, when the skeleton parser in Figure 3.15 on
page 119 reduces by A — S, it pops “2 x | 8|” symbols from the stack and
pushes A onto the stack. The table generator must produce data structures
that map a production from the reduce entry in the Action table, say A — B,
into both | B | and A. Other tables, such as a map from the integer representing
a grammar symbol into its textual name, are needed for debugging and for
diagnostic messages.

Handle Finding, Revisited

LR(1) parsers derive their efficiency from a fast handle-finding mechanism
embedded in the Action and Goto tables. The canonical collection, CC, rep-
resents a handle-finding DFA for the grammar. Figure 3.25 shows the DFA for
our example, the parentheses grammar.

How can the Lr(1) parser use a DFA to find the handles, when we know

that the language of parentheses is not a regular language? The LRr(1) parser

relies on a simple observation: the set of handles is finite. The set of handles  The (r(1) parser makes the handle’s position
is precisely the set of complete LR(1) items—those with the placeholder e  implicit, at stacktop. This design decision
at the right end of the item’s production. Any language with a finite set of  drastically reduces the number of possible
sentences can be recognized by a DFA. Since the number of productions and handles.

the number of lookahead symbols are both finite, the number of complete

items is finite, and the language of handles is a regular language.

When the LRr(1) parser executes, it interleaves two kinds of actions: shifts
and reduces. The shift actions simulate steps in the handle-finding DFA. The

M FIGURE 3.25 Handle-Finding DFA for the Parentheses Grammar.
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parser performs one shift action per word in the input stream. When the
handle-finding DFA reaches a final state, the LR(1) parser performs a reduce
action. The reduce actions reset the state of the handle-finding DFA to reflect
the fact that the parser has recognized a handle and replaced it with a non-
terminal. To accomplish this, the parser pops the handle and its state off
the stack, revealing an older state. The parser uses that older state, the look-
ahead symbol, and the Goto table to discover the state in the DFA from which
handle-finding should continue.

The reduce actions tie together successive handle-finding phases. The reduc-
tion uses left context—the state revealed by the reduction summarizes the
prior history of the parse—to restart the handle-finding DFA in a state that
reflects the nonterminal that the parser just recognized. For example, in the
( that it encounters. These stacked states allow the algorithm to match up
the opening and closing parentheses.

Notice that the handle-finding DFA has transitions on both terminal and non-
terminal symbols. The parser traverses the nonterminal edges only on a
reduce action. Each of these transitions, shown in gray in Figure 3.25, corre-
sponds to a valid entry in the Goto table. The combined effect of the terminal
and nonterminal actions is to invoke the DFA recursively each time it must
recognize a nonterminal.

3.4.3 Errors in the Table Construction

As a second example of the LR(1) table construction, consider the ambigu-
ous grammar for the classic if-then-else construct. Abstracting away
the details of the controlling expression and all other statements (by treat-
ing them as terminal symbols) produces the following four-production
grammar:

1 Goal — Stmt

2 Stmt — if expr then Stmt

3 | if expr then Stmt else Stmt
4 | assign

It has two nonterminal symbols, Goal and Stmt, and six terminal symbols,
if, expr, then, else, assign, and the implicit eof.

The construction begins by initializing cco to the item [Goal —
e Stmt, eof ] and taking its cTosure to produce the first set.
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Item Goal Stmt if expr then else assign eof
0 cCCo ] CcC; CCp ] ] ] CC3 ]
1 ccy @ @ % ] ] %) @ %)
CCy [%) ] (%) CCy [ [ ] [
CC3 @ % ] ] 1% @ %)
CCyq @ @ % @ CCs ] @ %
CCjs [/ CCq CC7 [ [ [/ CCg [/
4  CCq [/ ] [/ [ [ CCo ] [
CCy (%) ] (%) CCio (%] (%) ] ]
CCg 0 @ 0 ] ] @ @ 7]
5 ccg [ CCy;  CCy [ [ [ CC3 [/
CCqg [} 1) [} [} CCip [} ) [}
6 CCyp @ @ 7 ] ] @ @ %)
CCyp (4] CCjz CCy [ (%] [%] CCg [4]
CCj3 0 @ ? @ 0 CCyyq 9 ]
CCi4 (%) CCis CCy (7] (4] (4] CCg (4]
CCis 0 @ 1% ] ] 0 @ 0

M FIGURE 3.26 Trace of the LR(1) Construction onthe I f-Then-ETse Grammar.

o — [Goal — e Stmt, eof ] [Stmt — e if expr then Stmt, eof ]
0= [Stmt — e assign, eof] [Stmt— e if expr then Stmtelse Stmt, eof]

From this set, the construction begins deriving the remaining members of
the canonical collection of sets of LR(1) items.

Figure 3.26 shows the progress of the construction. The first iteration exam-
ines the transitions out of ccy for each grammar symbol. It produces three
new sets for the canonical collection from ccy: cc; for Stmt, cc, for if, and
ccs for assign. These sets are:

cCc| = [[Goal—> Stmt o,eof]]

P [Stmt — if e expr then Stmt,eof],
" | [Stmt— if e expr then Stmtelse Stmt,eof ]

CcC3 = {[Stmt—> assign o,eof]}

The second iteration examines transitions out of these three new sets.
Only one combination produces a new set, looking at cc, with the symbol
expr.

CCyq =

[Stmt — if expr e then Stmt,eof],
[Stmt — if expr e then Stmtelse Stmt,eof]
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The next iteration computes transitions from ccC4; it creates CCs as
goto(ccy, then).

[Stmt — if expr then e Stmt,eof],
[Stmt — if expr then e Stmtelse Stmt,eof],
CC5 = { [Stmt — e if expr then Stmt,{eof,else}],
[Stmt — e assign,{eof,else}],
[Stmt — e if expr then Stmtelse Stmt,{eof,else}]

The fourth iteration examines transitions out of ccs. It creates new sets for
Stmt, for i f, and for assign.

CCr — [Stmt — if expr then Stmt e,e0f],
" | [Stmt — if expr then Stmt eelse Stmt,eof]
o [Stmt — if e expr then Stmt,{eof,else}],
= [Stmt — if e expr then Stmtelse Stmt,{eof,else}]

cCg = {[Stmt — assign e,{eof,else}]}

The fifth iteration examines cCg, CC7, and ccg. While most of the com-
binations produce the empty set, two combinations lead to new sets. The
transition on else from ccCg leads to ccg, and the transition on expr from
CCy creates CCyg.

[Stmt — if expr then Stmtelse e Stmt,eof],
[Stmt — e if expr then Stmt,eof],

[Stmt — e if expr then Stmtelse Stmt,eof],
[Stmt — e assign,eof]

CCqg =

[Stmt — if expr e then Stmt,{eof,else}],

CcCip =
10 [Stmt — if expr e then Stmtelse Stmt,{eof,else}]

When the sixth iteration examines the sets produced in the fifth iteration, it
creates two new sets, cCy; from ccg on Stmt and ccy, from ccjg on then. It
also creates duplicate sets for cc, and ccsz from ccy.

cCy; = {[Stmt — if expr then Stmtelse Stmt o,e0f]}

[Stmt — if expr then e Stmt,{eof,else}],

[Stmt — if expr then e Stmtelse Stmt,{eof,else}],
CCip = { [Stmt — e if expr then Stmt,{eof,else}],

[Stmt — e if expr then Stmtelse Stmt,{eof,else}],

[Stmt — eassign,{eof,else}]
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Iteration seven creates cCy3 from ccj, on Stmt. It recreates cc7 and ccg.

CCia — [Stmt — if expr then Stmt o ,{eof,else}],
3= [Stmt — if expr then Stmt e else Stmt,{eof,else}]

Iteration eight finds one new set, ccj4 from ccy3 on the transition for else.

[Stmt — if expr then Stmtelse e Stmt,{eof,else}],
[Stmt — o if expr then Stmt,{eof,else}],

[Stmt — e if expr then Stmtelse Stmt,{eof,else}],
[Stmt — e assign,{eof,else}]

CCl4 =

Iteration nine generates CCys from cCy4 on the transition for Stmt, along with
duplicates of cc7 and ccg.

cCi5= {[Stmt — if expr then Stmtelse Stmte,{eof,else}]}

The final iteration looks at cCys. Since the e lies at the end of every item
in cCys, it can only generate empty sets. At this point, no additional sets of
items can be added to the canonical collection, so the algorithm has reached
a fixed point. It halts.

The ambiguity in the grammar becomes apparent during the table-filling
algorithm. The items in states cco through ccj, generate no conflicts. State
ccq3 contains four items:

. [Stmt — if expr then Stmt e,else]
. [Stmt — if expr then Stmt e, eof]
. [Stmt — if expr then Stmt e else Stmt, else]
[Stmt — if expr then Stmt e else Stmt, eof ]

o S

Item 1 generates a reduce entry for ccy3 and the lookahead else. Item 3

generates a shift entry for the same location in the table. Clearly, the table

entry cannot hold both actions. This shift-reduce conflict indicates that the

grammar is ambiguous. Items 2 and 4 generate a similar shift-reduce conflict

with a lookahead of eof. When the table-filling algorithm encounters such Atypical error message from a parser generator
a contlict, the construction has failed. The table generator should report the i jydes the 1r(1) items that generate the
problem—a fundamental ambiguity between the productions in the specific  conflict; another reason to study the table
LR(1) items—to the compiler writer. construction.

In this case, the conflict arises because production 2 in the grammar is a
prefix of production 3. The table generator could be designed to resolve this
conflict in favor of shifting; that forces the parser to recognize the longer
production and binds the else to the innermost i f.
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An ambiguous grammar can also produce a reduce-reduce conflict. Such
a conflict can occur if the grammar contains two productions A—y§ and
B—yé, with the same right-hand side y§. If a state contains the items
[A—y3d e,a] and [B—y 3§ e,a], then it will generate two conflicting reduce
actions for the lookahead a—one for each production. Again, this conflict
reflects a fundamental ambiguity in the underlying grammar; the compiler
writer must reshape the grammar to eliminate it (see Section 3.5.3).

Since parser generators that automate this process are widely available, the
method of choice for determining whether a grammar has the Lr(1) property
is to invoke an LR(1) parser generator on it. If the process succeeds, the
grammar has the Lr(1) property.

SECTION REVIEW

Exercise 12 shows an LR(1) grammar that has no LR(1) parsers are widely used in compilers built in both industry and
equivalent LL(1) grammar. academia. These parsers accept a large class of languages. They use
time proportional to the size of the derivation that they construct. Tools
that generate an LR(1) parser are widely available in a broad variety of
implementation languages.

The LR(1) table-construction algorithm is an elegant application of theory
to practice. It systematically builds up a model of the handle-recognizing
DFA and then translates that model into a pair of tables that drive the
skeleton parser. The table construction is a complex undertaking that
requires painstaking attention to detail. It is precisely the kind of task that

As a final example, the LR tables for the classic should be automated—parser generators are better at following these
expression grammar appear in Figures 3.31 long chains of computations than are humans. That notwithstanding,
and 3.32 on pages 151 and 152. a skilled compiler writer should understand the table-construction

algorithms because they provide insight into how the parsers work, what
kinds of errors the parser generator can encounter, how those errors
arise, and how they can be remedied.

s
Review Questions
1. Show the steps that the skeleton LR(1) parser, with the tables for the

"

2. Build the LR(1) tables for the SheepNoise grammar, given in
Section 3.2.2 on page 86, and show the skeleton parser’s actions on

the input “baa baa baa.”
P -
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3.5 PRACTICAL ISSUES

Even with automatic parser generators, the compiler writer must manage
several issues to produce a robust, efficient parser for a real programming
language. This section addresses several issues that arise in practice.

3.5.1 Error Recovery

Programmers often compile code that contains syntax errors. In fact, com-
pilers are widely accepted as the fastest way to discover such errors. In this
application, the compiler must find as many syntax errors as possible in a
single attempt at parsing the code. This requires attention to the parser’s
behavior in error states.

All of the parsers shown in this chapter have the same behavior when they
encounter a syntax error: they report the problem and halt. This behavior
prevents the compiler from wasting time trying to translate an incorrect pro-
gram. However, it ensures that the compiler finds at most one syntax error
per compilation. Such a compiler would make finding all the syntax errors
in a file of program text a potentially long and painful process.

A parser should find as many syntax errors as possible in each compilation.
This requires a mechanism that lets the parser recover from an error by mov-
ing to a state where it can continue parsing. A common way of achieving this
is to select one or more words that the parser can use to synchronize the input
with its internal state. When the parser encounters an error, it discards input
symbols until it finds a synchronizing word and then resets its internal state
to one consistent with the synchronizing word.

In an Algol-like language, with semicolons as statement separators, the
semicolon is often used as a synchronizing word. When an error occurs,
the parser calls the scanner repeatedly until it finds a semicolon. It then
changes state to one that would have resulted from successful recognition
of a complete statement, rather than an error.

In a recursive-descent parser, the code can simply discard words until it finds
a semicolon. At that point, it can return control to the point where the routine
that parses statements reports success. This may involve manipulating the
runtime stack or using a nonlocal jump like C’s setjmp and 1ongjmp.

In an Lr(1) parser, this kind of resynchronization is more complex. The
parser discards input until it finds a semicolon. Next, it scans backward down
the parse stack until it finds a state s such that Gotols, Statement] is a valid,
nonerror entry. The first such state on the stack represents the statement that
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contains the error. The error recovery routine then discards entries on the
stack above that state, pushes the state Goto[s, Statement] onto the stack and
resumes normal parsing.

In a table-driven parser, either LL(1) or LR(1), the compiler needs a way
of telling the parser generator where to synchronize. This can be done
using error productions—a production whose right-hand side includes a
reserved word that indicates an error synchronization point and one or
more synchronizing tokens. With such a construct, the parser generator can
construct error-recovery routines that implement the desired behavior.

Of course, the error-recovery routines should take steps to ensure that the
compiler does not try to generate and optimize code for a syntactically
invalid program. This requires simple handshaking between the error-
recovery apparatus and the high-level driver that invokes the various parts
of the compiler.

3.5.2 Unary Operators

The classic expression grammar includes only binary operators. Algebraic
notation, however, includes unary operators, such as unary minus and abso-
lute value. Other unary operators arise in programming languages, including
autoincrement, autodecrement, address-of, dereference, boolean comple-
ment, and typecasts. Adding such operators to the expression grammar
requires some care.

Consider adding a unary absolute-value operator, ||, to the classic expression
grammar. Absolute value should have higher precedence than either x or +.

Goal

0 Goal — Expr l

1 Expr — Expr + Term Expr

2 | Expr - Term ,/I\.

3 | Term Expr ) Term
4 Term — Term X Value l 1

5 | Term + Value Term Value
6 | Value l 1

7 Value — || Factor Value Factor
8 | Factor A 1

9 Factor — ( Expr ) || Factor <num, 3>
10 | num l

11 | name <name, x>

(a) The Grammar (b) Parse Tree for ||x - 3

M FIGURE 3.27 Adding Unary Absolute Value to the Classic Expression Grammar.
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However, it needs a lower precedence than Factor to force evaluation of par-
enthetic expressions before application of ||. One way to write this grammar
is shown in Figure 3.27. With these additions, the grammar is still LrR(1). It
lets the programmer form the absolute value of a number, an identifier, or a
parenthesized expression.

Figure 3.27b shows the parse tree for the string | x - 3. It correctly shows that
the code must evaluate ||x before performing the subtraction. The grammar
does not allow the programmer to write |||, as that makes little mathe-
matical sense. It does, however, allow || (|x), which makes as little sense
as |||x.

The inability to write ||||x hardly limits the expressiveness of the language.
With other unary operators, however, the issue seems more serious. For
example, a C programmer might need to write *xp to dereference a vari-
able declared as char **p;. We can add a dereference production for Value
as well: Value — x Value. The resulting grammar is still an LR(1) grammar,
even if we replace the x operator in Term — Term x Value with , overload-

ing the operator “+” in the way that C does. This same approach works for
unary minus.

3.5.3 Handling Context-Sensitive Ambiguity

Using one word to represent two different meanings can create a syntactic
ambiguity. One example of this problem arose in the definitions of several
early programming languages, including FORTRAN, PL/1, and Ada. These lan-
guages used parentheses to enclose both the subscript expressions of an
array reference and the argument list of a subroutine or function. Given a
textual reference, such as fee(i,j), the compiler cannot tell if fee is a
two-dimensional array or a procedure that must be invoked. Differentiating
between these two cases requires knowledge of fee’s declared type. This
information is not syntactically obvious. The scanner undoubtedly classi-
fies fee as a name in either case. A function call and an array reference can
appear in many of the same situations.

Neither of these constructs appears in the classic expression grammar. We
can add productions that derive them from Factor.

Factor — FunctionReference
| ArrayReference
| Expr)
| num
| name
FunctionReference — name ( ArgList )

ArrayReference — name ( ArgList )
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Since the last two productions have identical right-hand sides, this grammar
is ambiguous, which creates a reduce-reduce conflict in an LRrR(1) table
builder.

Resolving this ambiguity requires extra-syntactic knowledge. In a recursive-
descent parser, the compiler writer can combine the code for FunctionRef-
erence and ArrayReference and add the extra code required to check the
name’s declared type. In a table-driven parser built with a parser generator,
the solution must work within the framework provided by the tools.

Two different approaches have been used to solve this problem. The com-
piler writer can rewrite the grammar to combine both the function invocation
and the array reference into a single production. In this scheme, the issue is
deferred until a later step in translation, when it can be resolved with infor-
mation from the declarations. The parser must construct a representation that
preserves all the information needed by either resolution; the later step will
then rewrite the reference to its appropriate form as an array reference or as
a function invocation.

Alternatively, the scanner can classify identifiers based on their declared
types, rather than their microsyntactic properties. This classification requires
some hand-shaking between the scanner and the parser; the coordination is
not hard to arrange as long as the language has a define-before-use rule.
Since the declaration is parsed before the use occurs, the parser can make
its internal symbol table available to the scanner to resolve identifiers into
distinct classes, such as variable-name and function-name. The relevant
productions become:

FunctionReference — function-name ( ArgList

| — |—

ArrayReference — variable-name ( ArgList

Rewritten in this way, the grammar is unambiguous. Since the scanner
returns a distinct syntactic category in each case, the parser can distinguish
the two cases.

3.5.4 Left versus Right Recursion

As we have seen, top-down parsers need right-recursive grammars rather
than left-recursive ones. Bottom-up parsers can accommodate either left or
right recursion. Thus, the compiler writer must choose between left and right
recursion in writing the grammar for a bottom-up parser. Several factors play
into this decision.
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Stack Depth

In general, left recursion can lead to smaller stack depths. Consider two alter-
nate grammars for a simple list construct, shown in Figures 3.28a and 3.28b.
(Notice the similarity to the SheepNoise grammar.) Using these grammars to
produce a five-element list leads to the derivations shown in Figures 3.28c
and 3.28d, respectively. An LR(1) parser would construct these sequences in
reverse. Thus, if we read the derivation from the bottom line to the top line,
we can follow the parsers’s actions with each grammar.

1. Left-recursive grammar This grammar shifts e1t; onto its stack and
immediately reduces it to List. Next, it shifts e1t, onto the stack and
reduces it to List. It proceeds until it has shifted each of the five e1t s
onto the stack and reduced them to List. Thus, the stack reaches a
maximum depth of two and an average depth of % = 1%.

2. Right-recursive grammar This version shifts all five e1t;s onto its
stack. Next, it reduces e1ts to List using rule two, and the remaining

List — List elt List — elt List
| elt | elt
(a) Left-Recursive Grammar (b) Right-Recursive Grammar
List
List elt; List
List elts elt; elty List
List elty elts elt; elty elty List
List elt; elty elts elt; elty elty elty List
List elty elty elty elts elt; elt, elts elty
elt; elty elty elty elts elts List
(c) Derivation with Left Recursion (d) Derivation with Right Recursion
elts elty
e]t4 e]tg
elts elts
elt; elty elty  elts
(e) AST with Left Recursion (f) AST with Right Recursion

M FIGURE 3.28 Left- and Right-Recursive List Grammars.
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e1tis using rule one. Thus, its maximum stack depth will be five and its
average will be % = 3%.

The right-recursive grammar requires more stack space; its maximum stack
depth is bounded only by the length of the list. In contrast, the maximum
stack depth with the left-recursive grammar depends on the grammar rather
than the input stream.

For short lists, this is not a problem. If, however, the list represents the
statement list in a long run of straight-line code, it might have hundreds
of elements. In this case, the difference in space can be dramatic. If all other
issues are equal, the smaller stack height is an advantage.

Associativity

Left recursion naturally produces left associativity, and right recursion nat-
urally produces right associativity. In some cases, the order of evaluation
Abstract syntax tree makes a difference. Consider the abstract syntax trees (AsTs) for the two five-
An asTis a contraction of the parse tree. See element lists, shown in Figures 3.28¢ and 3.28f. The left-recursive grammar
Section 5.2.1 on page 227. reduces e1tq to a List, then reduces List e1t,, and so on. This produces the
AST shown on the left. Similarly, the right-recursive grammar produces the

AST shown on the right.

For a list, neither of these orders is obviously incorrect, although the right-
recursive AST may seem more natural. Consider, however, the result if we
replace the list constructor with arithmetic operations, as in the grammars

Expr — Expr + Operand Expr — Operand + Expr
|  Expr - Operand | Operand - Expr
| Operand | Operand

For the string x; + X2 + x3 + x4 + x5 the left-recursive grammar implies a left-
to-right evaluation order, while the right-recursive grammar implies a right-
to-left evaluation order. With some number systems, such as floating-point
arithmetic, these two evaluation orders can produce different results.

Since the mantissa of a floating-point number is small relative to the range of
the exponent, addition can become an identity operation with two numbers
that are far apart in magnitude. If, for example, x4 is much smaller than xs,
the processor may compute x4 + x5 = x5 With well-chosen values, this effect
can cascade and yield different answers from left-to-right and right-to-left
evaluations.

Similarly, if any of the terms in the expression is a function call, then the
order of evaluation may be important. If the function call changes the value
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of a variable in the expression, then changing the evaluation order might
change the result.

In a string with subtractions, such as xj-xp +x3, changing the evaluation
order can produce incorrect results. Left associativity evaluates, in a pos-
torder tree walk, to (x; - x») +x3, the expected result. Right associativity,
on the other hand, implies an evaluation order of x; - (x,+x3). The com-
piler must, of course, preserve the evaluation order dictated by the language
definition. The compiler writer can either write the expression grammar so
that it produces the desired order or take care to generate the intermediate
representation to reflect the correct order and associativity, as described in
Section 4.5.2.

SECTION REVIEW

Building a compiler involves more than just transcribing the grammar
from some language definition. In writing down the grammar, many
choices arise that have an impact on both the function and the utility of
the resulting compiler. This section dealt with a variety of issues, ranging
from how to perform error recovery through the tradeoff between left
recursion and right recursion.

|

Review Questions

1. The programming language C uses square brackets to indicate an
array subscript and parentheses to indicate a procedure or function
argument list. How does this simplify the construction of a parser
for C?

2. The grammar for unary absolute value introduced a new terminal
symbol as the unary operator. Consider adding a unary minus to
the classic expression grammar. Does the fact that the same termi-
nal symbol occurs as either a unary minus or a binary minus introduce
complications? Justify your answer.

3.6 ADVANCED TOPICS

To build a satisfactory parser, the compiler writer must understand the basics
of engineering a grammar and a parser. Given a working parser, there are
often ways of improving its performance. This section looks at two specific
issues in parser construction. First, we examine transformations on the gram-
mar that reduce the length of a derivation to produce a faster parse. These
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Goal

0 Goal — Expr El
xpr
1 Expr — Expr + Term A/lp\‘
2 | Expr - Term
3 | Term Expr + Term
4 Term — Term x Factor 1 /1\~
5 | Term = Factor Term Term x Factor
6 | Factor 1 l 1
7 Factor — ( Expr ) Factor Factor <name,b>
8 | num 1 l
9 | name <name,a> <name, 2>
(a) The Classic Expression Grammar (b) Parse Tree for a+2 xb

M FIGURE 3.29 The (lassic Expression Grammar, Revisited.

ideas apply to both top-down and bottom-up parsers. Second, we discuss
transformations on the grammar and the Act7on and Goto tables that reduce
table size. These techniques apply only to LR parsers.

3.6.1 Optimizing a Grammar

While syntax analysis no longer consumes a major share of compile time,
the compiler should not waste undue time in parsing. The actual form of a
grammar has a direct effect on the amount of work required to parse it. Both
top-down and bottom-up parsers construct derivations. A top-down parser
performs an expansion for every production in the derivation. A bottom-
up parser performs a reduction for every production in the derivation. A
grammar that produces shorter derivations takes less time to parse.

The compiler writer can often rewrite the grammar to reduce the parse tree
height. This reduces the number of expansions in a top-down parser and the
number of reductions in a bottom-up parser. Optimizing the grammar cannot
change the parser’s asymptotic behavior; after all, the parse tree must have
a leaf node for each symbol in the input stream. Still, reducing the constants
in heavily used portions of the grammar, such as the expression grammar,
can make enough difference to justify the effort.

Consider, again, the classic expression grammar from Section 3.2.4. (The
LR(1) tables for the grammar appear in Figures 3.31 and 3.32.) To enforce
the desired precedence among operators, we added two nonterminals, Term
and Factor, and reshaped the grammar into the form shown in Figure 3.29a.
This grammar produces rather large parse trees, even for simple expressions.
For example, the expression a + 2 x b, the parse tree has 14 nodes, as shown
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Goal

4 Term — Term x ( Expr) Expr
5 | Term x name m
6 | Term x num
7 | Term = ( Expr ) Expr + Term
8 | Term = name l ‘/l\
9 | Term + num Term Term X <name,b>
10 | ( Expr )
11 | name 1 1
12 | num <name,a> <name, 2>

(a) New Productions for Term (b) Parse Tree fora+2 xb

M FIGURE 3.30 Replacement Productions for 7erm.

in Figure 3.29b. Five of these nodes are leaves that we cannot eliminate.
(Changing the grammar cannot shorten the input program.)

Any interior node that has only one child is a candidate for optimization. The
sequence of nodes Expr to Term to Factor to (name, a) uses four nodes for a
single word in the input stream. We can eliminate at least one layer, the layer
of Factor nodes, by folding the alternative expansions for Factor into Term,
as shown in Figure 3.30a. It multiplies by three the number of alternatives
for Term, but shrinks the parse tree by one layer, shown in Figure 3.30b.

In an Lr(1) parser, this change eliminates three of nine reduce actions, and
leaves the five shifts intact. In a top-down recursive-descent parser for an
equivalent predictive grammar, it would eliminate 3 of 14 procedure calls.

In general, any production that has a single symbol on its right-hand side
can be folded away. These productions are sometimes called useless pro-
ductions. Sometimes, useless productions serve a purpose—making the
grammar more compact and, perhaps, more readable, or forcing the deriva-
tion to assume a particular shape. (Recall that the simplest of our expression
grammars accepts a+2 x b but does not encode any notion of precedence
into the parse tree.) As we shall see in Chapter 4, the compiler writer may
include a useless production simply to create a point in the derivation where
a particular action can be performed.

Folding away useless productions has its costs. In an LR(1) parser, it can
make the tables larger. In our example, eliminating Factor removes one col-
umn from the Goto table, but the extra productions for 7erm increase the size
of CC from 32 sets to 46 sets. Thus, the tables have one fewer column, but
an extra 14 rows. The resulting parser performs fewer reductions (and runs
faster), but has larger tables.



150 CHAPTER 3 Parsers

In a hand-coded, recursive-descent parser, the larger grammar may increase
the number of alternatives that must be compared before expanding some
left-hand side. The compiler writer can sometimes compensate for the
increased cost by combining cases. For example, the code for both nontrivial
expansions of Expr’ in Figure 3.10 is identical. The compiler writer could
combine them with a test that matches word against either + or -. Alterna-
tively, the compiler writer could assign both + and - to the same syntactic
category, have the parser inspect the syntactic category, and use the lexeme
to differentiate between the two when needed.

3.6.2 Reducing the Size of LR(1) Tables

Unfortunately, the LR(1) tables generated for relatively small grammars
can be large. Figures 3.31 and 3.32 show the canonical LRr(1) tables for
the classic expression grammar. Many techniques exist for shrinking such
tables, including the three approaches to reducing table size described in
this section.

Combining Rows or Columns

If the table generator can find two rows, or two columns, that are identical,
it can combine them. In Figure 3.31, the rows for states O and 7 through 10
are identical, as are rows 4, 14, 21, 22, 24, and 25. The table generator can
implement each of these sets once, and remap the states accordingly. This
would remove nine rows from the table, reducing its size by 28 percent. To
use this table, the skeleton parser needs a mapping from a parser state to
a row index in the Action table. The table generator can combine identi-
cal columns in the analogous way. A separate inspection of the Goto table
will yield a different set of state combinations—in particular, all of the rows
containing only zeros should condense to a single row.

In some cases, the table generator can prove that two rows or two columns
differ only in cases where one of the two has an “error” entry (denoted by a
blank in our figures). In Figure 3.31, the columns for eof and for num differ
only where one or the other has a blank. Combining such columns produces
the same behavior on correct inputs. It does change the parser’s behavior on
erroneous inputs and may impede the parser’s ability to provide accurate and
helpful error messages.

Combining rows and columns produces a direct reduction in table size. If this
space reduction adds an extra indirection to every table access, the cost of
those memory operations must trade off directly against the savings in mem-
ory. The table generator could also use other techniques to represent sparse
matrices—again, the implementor must consider the tradeoff of memory size
against any increase in access costs.
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Action Table
State eof + - X = ( ) num name
0 s4 s5 s6
1 acc s7 s8
2 r4 r4 r4 s9 s10
3 r7 r7 r7 r7 r7
4 s 14 s15 s16
5 r9 ro9 ro9 ro9 r9
6 r10 r10 r10 r10 r10
7 s4 s5 s6
8 s4 s5 s6
9 s4 s5 s6
10 s4 s5 s6
11 s21 s22 s23
12 r4 r4 s24 s25 r4
13 r7 r7 r7 r7 r7
14 s 14 s15 s16
15 ro9 ro r9 ro ro9
16 r10 r10 r10 r10 r10
17 r2 r2 r2 s9 s10
18 r3 r3 r3 s9 s10
19 r5 r5 r5 r5 r5
20 ré ré ré ré ré
21 s 14 s15 s16
22 s 14 s15 s16
23 r8 r8 r8 r8 r8
24 s 14 s15 s16
25 s 14 s15 s16
26 s21 s22 s 31
27 r2 r2 s24 s25 r2
28 r3 r3 s24 s25 r3
29 r5 r5 r5 r5 r5
30 ré ré ré ré ré
31 r8 r8 r8 r8 r8

M FIGURE 3.31 Action Table for the Classic Expression Grammar.

Shrinking the Grammar

In many cases, the compiler writer can recode the grammar to reduce the
number of productions it contains. This usually leads to smaller tables. For
example, in the classic expression grammar, the distinction between a num-
ber and an identifier is irrelevant to the productions for Goal, Expr, Term,
and Factor. Replacing the two productions Factor — num and Factor —
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Goto Table Goto Table
State Expr Term Factor State Expr Term Factor
0 1 2 3 16
1 17
2 18
3 19
4 1 12 13 20
5 21 27 13
6 22 28 13
7 17 3 23
8 18 3 24 29
9 19 25 30
10 20 26
1 27
12 28
13 29
14 26 12 13 30
15 31

B FIGURE 3.32 GotoTable for the Classic Expression Grammar.

name with a single production Factor — val shrinks the grammar by a pro-
duction. In the Action table, each terminal symbol has its own column.
Folding num and name into a single symbol, val, removes a column from
the Action table. To make this work, in practice, the scanner must return the
same syntactic category, or word, for both num and name.

Similar arguments can be made for combining x and + into a single ter-
minal muldiv, and for combining + and - into a single terminal addsub.
Each of these replacements removes a terminal symbol and a production.
These three changes produce the reduced expression grammar shown in
Figure 3.33a. This grammar produces a smaller CC, removing rows from the
table. Because it has fewer terminal symbols, it has fewer columns as well.

The resulting Action and Goto tables are shown in Figure 3.33b. The
Action table contains 132 entries and the Goto table contains 66 entries,
for a total of 198 entries. This compares favorably with the tables for the
original grammar, with their 384 entries. Changing the grammar produced a
48 percent reduction in table size. The tables still contain opportunities for
further reductions. For example, rows 0, 6, and 7 in the Action table are
identical, as are rows 4, 11, 15, and 17. Similarly, the Goto table has many
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1 Goal — Expr

2 Expr — Expr addsub Term
3 | Term

4 Term — Term muldiv Factor
5 | Factor

6 Factor — ( Expr )

7 | val

(a) The Reduced Expression Grammar

Action Table Goto Table

eof addsub muldiv ( ) val Expr Term Factor
0 s4 s5 1 2 3
1 acc s6
2 r3 r3 s7
3 r5 r5 r5
4 s 11 s12 8 9 10
5 r7 r7 r7
6 s4 s5 13 3
7 s4 s5 14
8 s 15 s 16
9 r3 s17 r3
10 r5 r5 r5
1 s 11 s 12 18 9 10
12 r7 r7 r7
13 r2 r2 s7
14 r4 r4 r4
15 s 11 s 12 19 10
16 r6 ré ré
17 s 11 s12 20
18 s 15 s 21
19 r2 s17 r2
20 r4 r4 r4
21 ré ré ré

(b) Action and Goto Tables for the Reduced Expression Grammar

M FIGURE 3.33 The Reduced Expression Grammar and its Tables.

rows that only contain the error entry. If table size is a serious concern, rows
and columns can be combined after shrinking the grammar.

Other considerations may limit the compiler writer’s ability to combine pro-
ductions. For example, the x operator might have multiple uses that make
combining it with + impractical. Similarly, the parser might use separate
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productions to let the parser handle two syntactically similar constructs in
different ways.

Directly Encoding the Table

As a final improvement, the parser generator can abandon the table-
driven skeleton parser in favor of a hard-coded implementation. Each state
becomes a small case statement or a collection of i f—then—else statements
that test the type of the next symbol and either shift, reduce, accept, or
report an error. The entire contents of the Action and Goto tables can be
encoded in this way. (A similar transformation for scanners is discussed in
Section 2.5.2.)

The resulting parser avoids directly representing all of the “don’t care” states
in the Action and Goto tables, shown as blanks in the figures. This space
savings may be offset by larger code size, since each state now includes
more code. The new parser, however, has no parse table, performs no table
lookups, and lacks the outer loop found in the skeleton parser. While its
structure makes it almost unreadable by humans, it should execute more
quickly than the corresponding table-driven parser. With appropriate code-
layout techniques, the resulting parser can exhibit strong locality in both the
instruction cache and the paging system. For example, we should place all
the routines for the expression grammar together on a single page, where
they cannot conflict with one another.

Using Other Construction Algorithms

Several other algorithms to construct LR-style parsers exist. Among these
techniques are the SLR(1) construction, for simple LR(1), and the LALR(1)
construction, for lookahead Lr(1). Both of these constructions produce
smaller tables than the canonical Lr(1) algorithm.

The sLr(1) algorithm accepts a smaller class of grammars than the canoni-
cal Lr(1) construction. These grammars are restricted so that the lookahead
symbols in the LR(1) items are not needed. The algorithm uses FOLLOW sets
to distinguish between cases in which the parser should shift and those in
which it should reduce. This mechanism is powerful enough to resolve many
grammars of practical interest. By using FOLLOW sets, the algorithm elim-
inates the need for lookahead symbols. This produces a smaller canonical
collection and a table with fewer rows.

The LALR(1) algorithm capitalizes on the observation that some items in the
set representing a state are critical and that the remaining ones can be derived
from the critical items. The LALR(1) table construction only represents the
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critical items; again, this produces a canonical collection that is equivalent
to the one produced by the SLR(1) construction. The details differ, but the
table sizes are the same.

The canonical Lr(1) construction presented earlier in the chapter is the most
general of these table-construction algorithms. It produces the largest tables,
but accepts the largest class of grammars. With appropriate table reduction
techniques, the Lr(1) tables can approximate the size of those produced by
the more limited techniques. However, in a mildly counterintuitive result,
any language that has an LrR(1) grammar also has an LALR(1) grammar and
an SLR(1) grammar. The grammars for these more restrictive forms will
be shaped in a way that allows their respective construction algorithms to
resolve the situations in which the parser should shift and those in which it
should reduce.

3.7 SUMMARY AND PERSPECTIVE

Almost every compiler contains a parser. For many years, parsing was a
subject of intense interest. This led to the development of many different
techniques for building efficient parsers. The LR(1) family of grammars
includes all of the context-free grammars that can be parsed in a deter-
ministic fashion. The tools produce efficient parsers with provably strong
error-detection properties. This combination of features, coupled with the
widespread availability of parser generators for LR(1), LALR(1), and SLR(1)
grammars, has decreased interest in other automatic parsing techniques such
as operator precedence parsers.

Top-down, recursive-descent parsers have their own set of advantages. They
are, arguably, the easiest hand-coded parsers to construct. They provide
excellent opportunities to detect and repair syntax errors. They are efficient;
in fact, a well-constructed top-down, recursive-descent parser can be faster
than a table-driven LRr(1) parser. (The direct encoding scheme for LR(1) may
overcome this speed advantage.) In a top-down, recursive-descent parser, the
compiler writer can more easily finesse ambiguities in the source language
that might trouble an Lr(1) parser—such as a language in which keyword
names can appear as identifiers. A compiler writer who wants to construct a
hand-coded parser, for whatever reason, is well advised to use the top-down,
recursive-descent method.

In choosing between LR(1) and LL(1) grammars, the choice becomes one of
available tools. In practice, few, if any, programming-language constructs
fall in the gap between LR(1) grammars and LL(1) grammars. Thus, start-
ing with an available parser generator is always better than implementing a
parser generator from scratch.
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More general parsing algorithms are available. In practice, however, the
restrictions placed on context-free grammars by the LR(1) and LL(1) classes
do not cause problems for most programming languages.

B CHAPTER NOTES

The earliest compilers used hand-coded parsers [27, 227, 314]. The syn-
tactic richness of Algol 60 challenged early compiler writers. They tried a
variety of schemes to parse the language; Randell and Russell give a fasci-
nating overview of the methods used in a variety of Algol 60 compilers [293,
Chapter 1].

Irons was one of the first to separate the notion of syntax from transla-
tion [202]. Lucas appears to have introduced the notion of recursive-descent
parsing [255]. Conway applies similar ideas to an efficient single-pass
compiler for coBoL [96].

The ideas behind LL and LR parsing appeared in the 1960s. Lewis and Stearns
introduced LL(k) grammars [245]; Rosenkrantz and Stearns described their
properties in more depth [305]. Foster developed an algorithm to transform a
grammar into LL(1) form [151]. Wood formalized the notion of left-factoring
a grammar and explored the theoretical issues involved in transforming a
grammar to LL(1) form [353, 354, 355].

Knuth laid out the theory behind LR(1) parsing [228]. DeRemer and oth-
ers developed techniques, the SLR and LALR table-construction algorithms,
that made the use of LR parser generators practical on the limited-memory
computers of the day [121, 122]. Waite and Goos describe a technique
for automatically eliminating useless productions during the LRr(1) table-
construction algorithm [339]. Penello suggested direct encoding of the tables
into executable code [282]. Aho and Ullman [8] is a definitive reference
on both LL and LR parsing. Bill Waite provided the example grammar in
exercise 3.7.

Several algorithms for parsing arbitrary context-free grammars appeared
in the 1960s and early 1970s. Algorithms by Cocke and Schwartz [91],
Younger [358], Kasami [212], and Earley [135] all had similar computa-
tional complexity. Earley’s algorithm deserves particular note because of
its similarity to the LR(1) table-construction algorithm. Earley’s algorithm
derives the set of possible parse states at parse time, rather than at runtime,
where the Lr(1) techniques precompute these in a parser generator. From a
high-level view, the LR(1) algorithms might appear as a natural optimization
of Earley’s algorithm.
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B EXERCISES

1. Write a context-free grammar for the syntax of regular expressions. Section 3.2

2. Write a context-free grammar for the Backus-Naur form (BNF)
notation for context-free grammars.

3. When asked about the definition of an unambiguous context-free
grammar on an exam, two students gave different answers. The first
defined it as “a grammar where each sentence has a unique syntax tree
by leftmost derivation.” The second defined it as “a grammar where
each sentence has a unique syntax tree by any derivation.” Which one
is correct?

4. The following grammar is not suitable for a top-down predictive Section 3.3
parser. Identify the problem and correct it by rewriting the grammar.
Show that your new grammar satisfies the LL(1) condition.

L — Ra R — aba Q — bbc
|  Qba | caba | bc
| Rbc

5. Consider the following grammar:

A — Ba C - cB
B — dab | Ac
| Cb

Does this grammar satisfy the LL(1) condition? Justify your answer. If
it does not, rewrite it as an LL(1) grammar for the same language.

6. Grammars that can be parsed top-down, in a linear scan from left to
right, with a kK word lookahead are called LL(k) grammars. In the text,
the LL(1) condition is described in terms of FIRST sets. How would
you define the FIRST sets necessary to describe an LL(k) condition?

7. Suppose an elevator is controlled by two commands: 1 to move the
elevator up one floor and | to move the elevator down one floor.
Assume that the building is arbitrarily tall and that the elevator starts
at floor x.

Write an LL(1) grammar that generates arbitrary command sequences
that (1) never cause the elevator to go below floor x and (2) always
return the elevator to floor x at the end of the sequence. For example,
4 and 1] 1] are valid command sequences, but 1]} 4 and 1]
are not. For convenience, you may consider a null sequence as valid.
Prove that your grammar is LL(1).



158 CHAPTER 3 Parsers

Section 3.4

10.

11.

Top-down and bottom-up parsers build syntax trees in different
orders. Write a pair of programs, TopDown and BottomUp, that take a
syntax tree and print out the nodes in order of construction. TopDown
should display the order for a top-down parser, while BottomUp
should show the order for a bottom-up parser.

The ClockNoise language (CN) is represented by the following
grammar:

Goal —  ClockNoise
ClockNoise — ClockNoise tick tock
| tick tock

a. What are the Lr(1) items of CN?

b. What are the FIRST sets of CN?

c. Construct the Canonical Collection of Sets of LR(1) Items for CN.
d. Derive the Action and Goto tables.

Consider the following grammar:

Start — S

S — Aa

A —- BC
| BCfT

B — b

C - C

a. Construct the canonical collection of sets of Lr(1) items for this
grammar.

b. Derive the Action and Goto tables.

c. Is the grammar Lr(1)?

Consider a robot arm that accepts two commands: V puts an apple in
the bag and A takes an apple out of the bag. Assume the robot arm
starts with an empty bag.

A valid command sequence for the robot arm should have no prefix

that contains more A commands than V commands. As examples,

VVAA and VAV are valid command sequences, but VAAY and

VAV AA are not.

a. Write an LR(1) grammar that represents all the value command
sequences for the robot arm.

b. Prove that the grammar is LR(1).
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12. The following grammar has no known LL(1) equivalent:
0 Start —
|

A —
|

B —
|

(TN )
T~ lo~ >

Show that the grammar is LR(1).

13. Write a grammar for expressions that can include binary operators (+ Section 3.6
and x), unary minus (-), autoincrement (++), and autodecrement (- -)
with their customary precedence. Assume that repeated unary minuses
are not allowed, but that repeated autoincrement and autodecrement
operators are allowed.

14. Consider the task of building a parser for the programming language Section 3.7
Scheme. Contrast the effort required for a top-down recursive-descent
parser with that needed for a table-driven LR(1) parser. (Assume that
you already have an LRr(1) table generator.)

15. The text describes a manual technique for eliminating useless

productions in a grammar.

a. Can you modify the LR(1) table-construction algorithm so that it
automatically eliminates the overhead from useless productions?

b. Even though a production is syntactically useless, it may serve a
practical purpose. For example, the compiler writer might associate
a syntax-directed action (see Chapter 4) with the useless
production. How should your modified table-construction
algorithm handle an action associated with a useless production?
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Chapter

Context-Sensitive Analysis

B CHAPTER OVERVIEW

An input program that is grammatically correct may still contain serious
errors that would prevent compilation. To detect such errors, a compiler per-
forms a further level of checking that involves considering each statement
in its actual context. These checks find errors of type and of agreement.

This chapter introduces two techniques for context-sensitive checking.
Attribute grammars are a functional formalism for specifying context-
sensitive computation. Ad hoc syntax-directed translation provides a simple
framework where the compiler writer can hang arbitrary code snippets to
perform these checks.

Keywords: Semantic Elaboration, Type Checking, Attribute Grammars,
Ad Hoc Syntax Directed Translation

4.1 INTRODUCTION

The compiler’s ultimate task is to translate the input program into a form that
can execute directly on the target machine. For this purpose, it needs knowl-
edge about the input program that goes well beyond syntax. The compiler
must build up a large base of knowledge about the detailed computation
encoded in the input program. It must know what values are represented,
where they reside, and how they flow from name to name. It must under-
stand the structure of the computation. It must analyze how the program
interacts with external files and devices. All of these facts can be derived
from the source code, using contextual knowledge. Thus, the compiler must
perform deeper analysis than is typical for a scanner or a parser.

These kinds of analysis are either performed alongside parsing or in a post-
pass that traverses the IR produced by the parser. We call this analysis either

Engineering a Compiler. DOI: 10.1016/B978-0-12-088478-0.00004-9
Copyright © 2012, Elsevier Inc. All rights reserved. 1 61
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“context-sensitive analysis,” to differentiate it from parsing, or “semantic
elaboration,” since its elaborates the 1r. This chapter explores two techniques
for organizing this kind of analysis in a compiler: an automated approach
based on attribute grammars and an ad hoc approach that relies on similar
concepts.

Conceptual Roadmap

To accumulate the contextual knowledge needed for further translation, the
compiler must develop ways of viewing the program other than syntax. It
uses abstractions that represent some aspect of the code, such as a type sys-
tem, a storage map, or a control-flow graph. It must understand the program’s
name space: the kinds of data represented in the program, the kinds of data
that can be associated with each name and each expression, and the map-
ping from a name’s appearance in the code back to a specific instance of that
name. It must understand the flow of control, both within procedures and
across procedures. The compiler will have an abstraction for each of these
categories of knowledge.

This chapter focuses on mechanisms that compilers use to derive context-
sensitive knowledge. It introduces one of the abstractions that the compiler
manipulates during semantic elaboration, the type system. (Others are intro-
duced in later chapters.) Next, the chapter presents a principled automatic
approach to implementing these computations in the form of attribute
grammars. It then presents the most widely used technique, ad hoc syntax-
directed translation, and compares the strengths and weaknesses of these
two tools. The advanced topics section includes brief descriptions of sit-
uations that present harder problems in type inference, along with a final
example of ad hoc syntax-directed translation.

Overview

Consider a single name used in the program being compiled; let’s call it x.
Before the compiler can emit executable target-machine code for compu-
tations involving x, it must have answers to many questions.

m  What kind of value is stored in x? Modern programming languages use
a plethora of data types, including numbers, characters, boolean values,
pointers to other objects, sets (such as {red, yellow, green}), and
others. Most languages include compound objects that aggregate
individual values; these include arrays, structures, sets, and strings.

m  How big is x? Because the compiler must manipulate x, it needs to
know the length of x’s representation on the target machine. If x is a
number, it might be one word (an integer or floating-point number), two
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words (a double-precision floating-point number or a complex number),
or four words (a quad-precision floating-point number or a double-
precision complex number). For arrays and strings, the number of
elements might be fixed at compile time or it might be determined at
runtime.

m [fxis a procedure, what arguments does it take? What kind of value, if
any, does it return? Before the compiler can generate code to invoke a
procedure, it must know how many arguments the code for the called
procedure expects, where it expects to find those arguments, and what
kind of value it expects in each argument. If the procedure returns a
value, where will the calling routine find that value, and what kind of
data will it be? (The compiler must ensure that the calling procedure
uses the value in a consistent and safe manner. If the calling procedure
assumes that the return value is a pointer that it can dereference, and the
called procedure returns an arbitrary character string, the results may
not be predictable, safe, or consistent.)

m  How long must x’s value be preserved? The compiler must ensure that
x’s value remains accessible for any part of the computation that can
legally reference it. If x is a local variable in Pascal, the compiler can
easily overestimate x’s interesting lifetime by preserving its value for
the duration of the procedure that declares x. If x is a global variable
that can be referenced anywhere, or if it is an element of a structure
explicitly allocated by the program, the compiler may have a harder
time determining its lifetime. The compiler can always preserve x’s
value for the entire computation; however, more precise information
about x’s lifetime might let the compiler reuse its space for other values
with nonconflicting lifetimes.

m  Who is responsible for allocating space for x (and initializing it)? 1s
space allocated for x implicitly, or does the program explicitly allocate
space for it? If the allocation is explicit, then the compiler must assume
that x’s address cannot be known until the program runs. If, on the other
hand, the compiler allocates space for x in one of the runtime data
structures that it manages, then it knows more about x’s address. This
knowledge may let it generate more efficient code.

The compiler must derive the answers to these questions, and more, from
the source program and the rules of the source language. In an Algol-like
language, such as Pascal or ¢, most of these questions can be answered by
examining the declarations for x. If the language has no declarations, as in
APL, the compiler must either derive this kind of information by analyzing
the program, or it must generate code that can handle any case that might
arise.
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To solve this particular problem, the compiler
typically creates a table of names. Itinserts a
name on declaration; it looks up the name at
each reference. A lookup failure indicates a
missing declaration.

This ad hoc solution bolts onto the parser, but
uses mechanisms well outside the scope of
context-free languages.

Type
an abstract category that specifies properties
held in common by all its members

Common types include integer, list, and character.

Many, if not all, of these questions reach beyond the context-free syntax of
the source language. For example, the parse trees for x <— y and x < z differ
only in the text of the name on the right-hand side of the assignment. If x and
y are integers while z is a character string, the compiler may need to emit
different code for x <— y than for x < z. To distinguish between these cases,
the compiler must delve into the program’s meaning. Scanning and parsing
deal solely with the program’s form; the analysis of meaning is the realm of
context-sensitive analysis.

To see this difference between syntax and meaning more clearly, consider
the structure of a program in most Algol-like languages. These languages
require that every variable be declared before it is used and that each use of
a variable be consistent with its declaration. The compiler writer can struc-
ture the syntax to ensure that all declarations occur before any executable
statement. A production such as

ProcedureBody — Declarations Executables

where the nonterminals have the obvious meanings, ensures that all dec-
larations occur before any executable statements. This syntactic constraint
does nothing to check the deeper rule—that the program actually declares
each variable before its first use in an executable statement. Neither does it
provide an obvious way to handle the rule in c++ that requires declaration
before use for some categories of variables, but lets the programmer intermix
declarations and executable statements.

Enforcing the “declare before use” rule requires a deeper level of knowledge
than can be encoded in the context-free grammar. The context-free grammar
deals with syntactic categories rather than specific words. Thus, the grammar
can specify the positions in an expression where a variable name may occur.
The parser can recognize that the grammar allows a variable name to occur,
and it can tell that one has occurred. However, the grammar has no way to
match one instance of a variable name with another; that would require the
grammar to specify a much deeper level of analysis—an analysis that can
account for context and that can examine and manipulate information at a
deeper level than context-free syntax.

4.2 AN INTRODUCTION TO TYPE SYSTEMS

Most programming languages associate a collection of properties with
each data value. We call this collection of properties the value’s type.
The type specifies a set of properties held in common by all values of
that type. Types can be specified by membership; for example, an inte-
ger might be any whole number i in the range —23! <i < 23!, or red
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might be a value in an enumerated type colors, defined as the set
{red, orange, yellow, green, blue, brown, black, white}. Types can
be specified by rules; for example, the declaration of a structure in ¢ defines
a type. In this case, the type includes any object with the declared fields in
the declared order; the individual fields have types that specify the allow-
able ranges of values and their interpretation. (We represent the type of a
structure as the product of the types of its constituent fields, in order.) Some
types are predefined by a programming language; others are constructed by
the programmer. The set of types in a programming language, along with
the rules that use types to specify program behavior, are collectively called
a type system.

4.2.1 The Purpose of Type Systems

Programming-language designers introduce type systems so that they can
specify program behavior at a more precise level than is possible in a
context-free grammar. The type system creates a second vocabulary for
describing both the form and behavior of valid programs. Analyzing a
program from the perspective of its type system yields information that
cannot be obtained using the techniques of scanning and parsing. In a com-
piler, this information is typically used for three distinct purposes: safety,
expressiveness, and runtime efficiency.

Ensuring Runtime Safety

A well-designed type system helps the compiler detect and avoid runtime
errors. The type system should ensure that programs are well behaved—
that is, the compiler and runtime system can identify all ill-formed programs
before they execute an operation that causes a runtime error. In truth, the
type system cannot catch all ill-formed programs; the set of ill-formed pro-
grams is not computable. Some runtime errors, such as dereferencing an
out-of-bounds pointer, have obvious (and often catastrophic) effects. Oth-
ers, such as mistakenly interpreting an integer as a floating-point number,
can have subtle and cumulative effects. The compiler should eliminate as
many runtime errors as it can using type-checking techniques.

To accomplish this, the compiler must first infer a type for each expression.  Type inference

These inferred types expose situations in which a value is incorrectly inter-  the process of determining a type for each name
preted, such as using a floating-point number in place of a boolean value. ~ andeachexpressionin the code
Second, the compiler must check the types of the operands of each operator

against the rules that define what the language allows. In some cases, these

rules might require the compiler to convert values from one representation

to another. In other circumstances, they may forbid such a conversion and

simply declare that the program is ill formed and, therefore, not executable.
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F integer real double complex
integer integer real double complex

real real real double complex
double double double  double illegal
complex complex complex illegal complex

M FIGURE 4.1 Result Types for Addition in FORTRAN 77.

Implicit conversion In many languages, the compiler can infer a type for every expression. FOR-
Many languages specify rules that allow an TRAN 77 has a particularly simple type system with just a handful of types.
operator to combine values of different typeand  Fjgure 4.1 shows all the cases that can arise for the + operator. Given an
;ee(lljj'(:ztha“he compiler insert conversions as expression a +b and the types of a and b, the table specifies the type of a +b.

' For an integer a and a double-precision b, a + b produces a double-precision
result. If, instead, a were complex, a + b would be illegal. The compiler
should detect this situation and report it before the program executes—a
simple example of type safety.

The alternative is to require the programmer to
write an explicit conversion or cast.

For some languages, the compiler cannot infer types for all expressions. APL,
for example, lacks declarations, allows a variable’s type to change at any
assignment, and lets the user enter arbitrary code at input prompts. While this
makes APL powerful and expressive, it ensures that the implementation must
do some amount of runtime type inference and checking. The alternative, of
course, is to assume that the program behaves well and ignore such checking.
In general, this leads to bad behavior when a program goes awry. In apt,
many of the advanced features rely heavily on the availability of type and
dimension information.

Safety is a strong reason for using typed languages. A language implementa-
tion that guarantees to catch most type-related errors before they execute can
simplify the design and implementation of programs. A language in which
every expression can be assigned an unambiguous type is called a strongly
typed language. If every expression can be typed at compile time, the lan-
guage is statically typed; if some expressions can only be typed at runtime,
the language is dynamically typed. Two alternatives exist: an untyped lan-
guage, such as assembly code or BCPL, and a weakly typed language—one
with a poor type system.

Improving Expressiveness

A well-constructed type system allows the language designer to specify
behavior more precisely than is possible with context-free rules. This capa-
bility lets the language designer include features that would be impossible
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to specify in a context-free grammar. An excellent example is operator  Operator overloading

overloading, which gives context-dependent meanings to an operator. Many  Anoperator that has different meanings based
programming languages use + to signify several kinds of addition. The inter- o the types of its arguments s “overloaded.”
pretation of + depends on the types of its operands. In typed languages,

many operators are overloaded. The alternative, in an untyped language, is

to provide lexically different operators for each case.

For example, in BCPL, the only type is a “cell.” A cell can hold any bit
pattern; the interpretation of that bit pattern is determined by the operator
applied to the cell. Because cells are essentially untyped, operators cannot be
overloaded. Thus, BCPL uses + for integer addition and #+ for floating-point
addition. Given two cells a and b, both a +b and a #+ b are valid expressions,
neither of which performs any conversion on its operands.

In contrast, even the oldest typed languages use overloading to specify com-
plex behavior. As described in the previous section, FORTRAN has a single
addition operator, +, and uses type information to determine how it should
be implemented. ANSI C uses function prototypes—declarations of the num-
ber and type of a function’s parameters and the type of its returned value—to
convert arguments to the appropriate types. Type information determines the
effect of autoincrementing a pointer in c; the amount of the increment is
determined by the pointer’s type. Object-oriented languages use type infor-
mation to select the appropriate implementation at each procedure call. For
example, Java selects between a default constructor and a specialized one by
examining the constructor’s argument list.

Generating Better Code

A well-designed type system provides the compiler with detailed informa-
tion about every expression in the program—information that can often be
used to produce more efficient translations. Consider implementing addi-
tion in FORTRAN 77. The compiler can completely determine the types of
all expressions, so it can consult a table similar to the one in Figure 4.2.
The code on the right shows the 1LOC operation for the addition, along
with the conversions specified in the FORTRAN standard for each mixed-type
expression. The full table would include all the cases from Figure 4.1.

In a language with types that cannot be wholly determined at compile
time, some of this checking might be deferred until runtime. To accomplish
this, the compiler would need to emit code similar to the pseudo-code in
Figure 4.3. The figure only shows the code for two numeric types, integer
and real. An actual implementation would need to cover the entire set of
possibilities. While this approach ensures runtime safety, it adds significant
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Type of Code
a b a+b

integer integer integer iADD ra, rp = ra+p

integer real real i2f f3 = Fag

fADD rag, rp = Fag+b
integer double double i2d rg = ag

dADD rad, ) = Y‘ader
real real real fADD ra, rp = rasp
real double double r2d r3 = aq

dADD Fag, Mo = '"ad+b
double double double dADD ra, rp, = rasp

M FIGURE 4.2 Implementing Addition in FORTRAN 77.

overhead to each operation. One goal of compile-time checking is to provide
such safety without the runtime cost.

Notice that runtime type checking requires a runtime representation for type.
Thus, each variable has both a value field and a tag field. The code that per-
forms runtime checking—the nested if-then-else structure in Figure 4.3—
relies on the tag fields, while the arithmetic uses the value fields. With tags,
each data item needs more space, that is, more bytes in memory. If a variable
The benefit of keeping a inaregister comesfrom  is stored in a register, both its value and its tag will need registers. Finally,
speed of access. If a’s tag isin Raw, that benefitis 405 must be initialized, read, compared, and written at runtime. All of those

lost activities add overhead to a simple addition operation.
An alternative is to use part of the spacein a to
store the tag and to reduce the range of values Runtime type checking imposes a large overhead on simple arithmetic and

that a can hold. on other operations that manipulate data. Replacing a single addition, or a
conversion and an addition, with the nest of if-then-else code in Figure 4.3
has a significant performance impact. The size of the code in Figure 4.3
strongly suggests that operators such as addition be implemented as proce-
dures and that each instance of an operator be treated as a procedure call. In a
language that requires runtime type checking, the costs of runtime checking
can easily overwhelm the costs of the actual operations.

Performing type inference and checking at compile time eliminates this
kind of overhead. It can replace the complex code of Figure 4.3 with the
fast, compact code of Figure 4.2. From a performance perspective, compile-
time checking is always preferable. However, language design determines
whether or not that is possible.
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// partial code for "atb = c"
if (tag(a) = integer) then
if (tag(b) = integer) then
value(c) = value(a) + value(b);
tag(c) = integer;
else if (tag(b) = real) then
temp = ConvertToReal(a);
value(c) = temp + value(b);
tag(c) = real;
else if (tag(b) = ...) then
// handle all other types . ..
else
signal runtime type fault
else if (tag(a) = real) then
if (tag(b) = integer) then
temp = ConvertToReal(b);
value(c) = value(a) + temp;
tag(c) = real;
else if (tag(b) = real) then
value(c) = value(a) + value(b);
tag(c) = real;
else if (tag(b) = ...) then
// handle all other types . ..
else
signal runtime type fault
else if (tag(a) = ...) then
// handle all other types ...

signal illegal tag value;

M FIGURE 4.3 Schema for Implementing Addition with Runtime Type Checking

Type Checking

To avoid the overhead of runtime type checking, the compiler must analyze
the program and assign a type to each name and each expression. It must
check these types to ensure that they are used in contexts where they are
legal. Taken together, these activities are often called type checking. This is
an unfortunate misnomer, because it lumps together the separate activities of
type inference and identifying type-related errors.
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The programmer should understand how type checking is performed in
a given language and compiler. A strongly typed, statically checkable
language might be implemented with runtime checking (or with no check-
ing). An untyped language might be implemented in a way that catches
certain kinds of errors. Both ML and Modula-3 are good examples of strongly
typed languages that can be statically checked. Common Lisp has a strong
type system that must be checked dynamically. ANSI c is a typed language,
but some implementations do a poor job of identifying type errors.

The theory underlying type systems encompasses a large and complex body
of knowledge. This section provides an overview of type systems and
introduces some simple problems in type checking. Subsequent sections
use simple problems of type inference as examples of context-sensitive
computations.

4.2.2 Components of a Type System

A type system for a typical modern language has four major components: a
set of base types, or built-in types; rules for constructing new types from the
existing types; a method for determining if two types are equivalent or com-
patible; and rules for inferring the type of each source-language expression.
Many languages also include rules for the implicit conversion of values from
one type to another based on context. This section describes each of these in
more detail, with examples from popular programming languages.

Base Types

Most programming languages include base types for some, if not all, of the
following kinds of data: numbers, characters, and booleans. These types are
directly supported by most processors. Numbers typically come in several
forms, such as integers and floating-point numbers. Individual languages add
other base types. Lisp includes both a rational number type and a recursive
type cons. Rational numbers are, essentially, pairs of integers interpreted as
ratios. A cons is defined as either the designated value ni1 or (cons first
rest) where first is an object, rest isa cons, and cons creates a list from
its arguments.

The precise definitions for base types, and the operators defined for them,
vary across languages. Some languages refine these base types to create
more; for example, many languages distinguish between several types of
numbers in their type systems. Other languages lack one or more of these
base types. For example, € has no string type, so C programmers use an array
of characters instead. Almost all languages include facilities to construct
more complex types from their base types.
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Numbers

Almost all programming languages include one or more kinds of numbers as
base types. Typically, they support both limited-range integers and approxi-
mate real numbers, often called floating-point numbers. Many programming
languages expose the underlying hardware implementation by creating dis-
tinct types for different hardware implementations. For example, ¢, c++, and
Java distinguish between signed and unsigned integers.

FORTRAN, PL/1, and C expose the size of numbers. Both ¢ and FORTRAN
specify the length of data items in relative terms. For example, a double
in FORTRAN is twice the length of a real. Both languages, however, give
the compiler control over the length of the smallest category of number.
In contrast, PL/1 declarations specify a length in bits. The compiler maps
this desired length onto one of the hardware representations. Thus, the
1BM 370 implementation of pL/I mapped both a fixed binary(12) and a
fixed binary(15) variable to a 16-bit integer, while a fixed binary(31)
became a 32-bit integer.

Some languages specify implementations in detail. For example, Java
defines distinct types for signed integers with lengths of 8, 16, 32, and 64
bits. Respectively, they are byte, short, int, and Tong. Similarly, Java’s
float type specifies a 32-bit IEEE floating-point number, while its double
type specifies a 64-bit 1EEE floating-point number. This approach ensures
identical behavior on different architectures.

Scheme takes a different approach. The language defines a hierarchy of num-
ber types but lets the implementor select a subset to support. However, the
standard draws a careful distinction between exact and inexact numbers and
specifies a set of operations that should return an exact number when all of
its arguments are exact. This provides a degree of flexibility to the imple-
menter, while allowing the programmer to reason about when and where
approximation can occur.

Characters

Many languages include a character type. In the abstract, a character is a sin-
gle letter. For years, due to the limited size of the Western alphabets, this led
to a single-byte (8-bit) representation for characters, usually mapped into the
AscII character set. Recently, more implementations—both operating sys-
tem and programming language—have begun to support larger character
sets expressed in the Unicode standard format, which requires 16 bits. Most
languages assume that the character set is ordered, so that standard compar-
ison operators, such as <, =, and >, work intuitively, enforcing lexicographic
ordering. Conversion between a character and an integer appears in some
languages. Few other operations make sense on character data.
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Booleans

Most programming languages include a boolean type that takes on two val-
ues: true and false. Standard operations provided for booleans include
and, or, xor, and not. Boolean values, or boolean-valued expressions, are
often used to determine the flow of control. ¢ considers boolean values as a
subrange of the unsigned integers, restricted to the values zero (false) and
one (true).

Compound and Constructed Types

While the base types of a programming language usually provide an ade-
quate abstraction of the actual kinds of data handled directly by the hard-
ware, they are often inadequate to represent the information domain needed
by programs. Programs routinely deal with more complex data structures,
such as graphs, trees, tables, arrays, records, lists, and stacks. These struc-
tures consist of one or more objects, each with its own type. The ability to
construct new types for these compound or aggregate objects is an essential
feature of many programming languages. It lets the programmer organize
information in novel, program-specific ways. Tying these organizations to
the type system improves the compiler’s ability to detect ill-formed pro-
grams. It also lets the language express higher-level operations, such as a
whole-structure assignment.

Take, for example, Lisp, which provides extensive support for programming
with lists. Lisp’s list is a constructed type. A list is either the designated value
nil or (cons first rest) where first is an object, rest is a list, and
cons is a constructor that creates a list from its two arguments. A Lisp imple-
mentation can check each call to cons to ensure that its second argument is,
in fact, a list.

Arrays

Arrays are among the most widely used aggregate objects. An array groups
together multiple objects of the same type and gives each a distinct name—
albeit an implicit, computed name rather than an explicit, programmer-
designated, name. The ¢ declaration int a[100][2001]; sets aside space for
100 x 200 = 20,000 integers and ensures that they can be addressed using
the name a. The references al1][17] and a[2]1[30] access distinct and
independent memory locations. The essential property of an array is that
the program can compute names for each of its elements by using numbers
(or some other ordered, discrete type) as subscripts.

Support for operations on arrays varies widely. FORTRAN 90, PL/1, and APL
all support assignment of whole or partial arrays. These languages sup-
port element-by-element application of arithmetic operations to arrays. For
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10 x 10 arrays x, y, and z, indexed from 1 to 10, the statement x =y + z would
overwrite each x[1,j]withy[i,jl+z[i,j]forall 1 <i,j<10.APL takes
the notion of array operations further than most languages; it includes oper-
ators for inner product, outer product, and several kinds of reductions. For
example, the sum reduction of y, written x < +/y, assigns x the scalar sum
of the elements of y.

An array can be viewed as a constructed type because we construct an array
by specifying the type of its elements. Thus, a 10X 10 array of integers has
type two-dimensional array of integers. Some languages include the array’s
dimensions in its type; thus a 10 x 10 array of integers has a different type
than a 12 x 12 array of integers. This lets the compiler catch array operations
in which dimensions are incompatible as a type error. Most languages allow
arrays of any base type; some languages allow arrays of constructed types
as well.

Strings

Some programming languages treat strings as a constructed type. PL/1, for
example, has both bit strings and character strings. The properties, attributes,
and operations defined on both of these types are similar; they are properties
of a string. The range of values allowed in any position differs between a bit
string and a character string. Thus, viewing them as string of bit and string of
character is appropriate. (Most languages that support strings limit the built-
in support to a single string type—the character string.) Other languages,
such as ¢, support character strings by handling them as arrays of characters.

A true string type differs from an array type in several important ways. Oper-
ations that make sense on strings, such as concatenation, translation, and
computing the length, may not have analogs for arrays. Conceptually, string
comparison should work from lexicographic order, so that "a" < "boo" and
"fee" < "fie". The standard comparison operators can be overloaded and
used in the natural way. Implementing comparison for an array of characters
suggests an equivalent comparison for an array of numbers or an array of
structures, where the analogy to strings may not hold. Similarly, the actual
length of a string may differ from its allocated size, while most uses of an
array use all the allocated elements.

Enumerated Types

Many languages allow the programmer to create a type that contains a spe-
cific set of constant values. An enumerated type, introduced in Pascal, lets
the programmer use self-documenting names for small sets of constants.
Classic examples include days of the week and months. In ¢ syntax, these
might be



174 CHAPTER 4 Context-Sensitive Analysis

enum WeekDay {Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday};

enum Month {January, February, March, April,
May, June, July, August, September,
October, November, December};

The compiler maps each element of an enumerated type to a distinct value.
The elements of an enumerated type are ordered, so comparisons between
elements of the same type make sense. In the examples, Monday < Tuesday
and June < July. Operations that compare different enumerated types
make no sense—for example, Tuesday > September should produce a type
error, Pascal ensures that each enumerated type behaves as if it were a sub-
range of the integers. For example, the programmer can declare an array
indexed by the elements of an enumerated type.

Structures and Variants

Structures, or records, group together multiple objects of arbitrary type. The
elements, or members, of the structure are typically given explicit names.
For example, a programmer implementing a parse tree in ¢ might need nodes
with both one and two children.

struct Nodel { struct Node2 {
struct Nodel =*left; struct Node2 xleft;
unsigned Operator; struct Node? xright;
int Value unsigned Operator;
} int Value
}

The type of a structure is the ordered product of the types of the indi-
vidual elements that it contains. Thus, we might describe the type of
a Nodel as (Nodel *) xunsignedxint, while a Node?2 would be
(Node2 *) x (Node2 ) xunsignedx int. These new types should have
the same essential properties that a base type has. In ¢, autoincrementing
a pointer to a Nodel or casting a pointer into a Nodel * has the desired
effect—the behavior is analogous to what happens for a base type.

Many programming languages allow the creation of a type that is the union
of other types. For example, some variable x can have the type integer or
boolean or WeekDay. In Pascal, this is accomplished with variant records—
a record is the Pascal term for a structure. In ¢, this is accomplished with a
union. The type of a union is the alternation of its component types; thus
our variable x has type integer U boolean U WeekDay. Unions can also
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AN ALTERNATIVE VIEW OF STRUCTURES

The classical view of structures treats each kind of structure as a distinct
type. This approach to structure types follows the treatment of other aggre-
gates, such as arrays and strings. It seems natural. It makes distinctions that
are useful to the programmer. For example, a tree node with two children
probably should have a different type than a tree node with three children;
presumably, they are used in different situations. A program that assigns
a three-child node to a two-child node should generate a type error and a
warning message to the programmer.

From the perspective of the runtime system, however, treating each struc-
ture as a distinct type complicates the picture. With distinct structure types,
the heap contains an arbitrary set of objects drawn from an arbitrary set
of types. This makes it difficult to reason about programs that deal directly
with the objects on the heap, such as a garbage collector. To simplify such
programs, their authors sometimes take a different approach to structure
types.

This alternate model considers all structures in the program as a single
type. Individual structure declarations each create a variant form of the
type structure. The type structure, itself, is the union of all these variants.
This approach lets the program view the heap as a collection of objects of
a single type, rather than a collection of many types. This view makes code
that manipulates the heap much simpler to analyze and optimize.

include structures of distinct types, even when the individual structure types
have different lengths. The language must provide a mechanism to reference
each field unambiguously.

Pointers

Pointers are abstract memory addresses that let the programmer manipulate  The address operator, when applied to an object
arbitrary data structures. Many languages include a pointer type. Pointers  oftypet, returns avalue of type pointer tot.
let a program save an address and later examine the object that it addresses.

Pointers are created when objects are created (new in Java or malloc in C).

Some languages provide an operator that returns the address of an object,

such as C’s & operator.

To protect programmers from using a pointer to type ¢ to reference a structure
of type s, some languages restrict pointer assignment to “equivalent” types.
In these languages, the pointer on the left-hand side of an assignment must
have the same type as the expression on the right-hand side. A program can
legally assign a pointer to integer to a variable declared as pointer to integer
but not to one declared as pointer to pointer to integer or pointer to boolean.
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These latter assignments are either illegal or require an explicit conversion
by the programmer.

Polymorphism Of course, the mechanism for creating new objects should return an object
Afunction that can operate on arguments of of the appropriate type. Thus, Java’s new explicitly creates a typed object;
different types s a polymorphic function. other languages use a polymorphic routine that takes the return type as a

Ifthe set of types must be specified explicitly, the  parameter. ANsI ¢ handles this in an unusual way: The standard allocation
function uses ad hoc polymorphism; if the
function body does not specify types, it uses
parametric polymorphism.

routine malloc returns a pointer to void. This forces the programmer to
cast the value returned by each call to malloc.

Some languages allow direct manipulation of pointers. Arithmetic on point-
ers, including autoincrement and autodecrement, allow the program to
construct new pointers. C uses the type of a pointer to determine autoincre-
ment and decrement magnitudes. The programmer can set a pointer to the
start of an array; autoincrementing advances the pointer from one element
in the array to the next element.

Type safety with pointers relies on an implicit assumption that addresses
correspond to typed objects. The ability to construct new pointers seri-
ously reduces the ability of both the compiler and its runtime system to
reason about pointer-based computations and to optimize such code. (See,
for example, Section 8.4.1.)

Type Equivalence

A critical component of any type system is the mechanism that it uses to
decide whether or not two different type declarations are equivalent. Con-

struct Tree { sider the two declarations in ¢ shown in the margin. Are Tree and STree the
struct Tree xleft: same type? Are they equivalent? Any programming language with a nontriv-
struct Tree *right; ial type system must include an unambiguous rule to answer this question for
int value arbitrary types.

}

struct STree {
struct STree *left;

Historically, two general approaches have been tried. The first, name equiv-
alence, asserts that two types are equivalent if and only if they have the
struct STree sright; same name. Philosophically, this rule assumes that the programmer can
int value select any name for a type; if the programmer chooses different names, the

} language and its implementation should honor that deliberate act. Unfortu-
nately, the difficulty of maintaining consistent names grows with the size of

the program, the number of authors, and the number of distinct files of code.

The second approach, structural equivalence, asserts that two types are
equivalent if and only if they have the same structure. Philosophically, this
rule asserts that two objects are interchangeable if they consist of the same
set of fields, in the same order, and those fields all have equivalent types.
Structural equivalence examines the essential properties that define the type.
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REPRESENTING TYPES

As with most objects that a compiler must manipulate, types need an inter-
nal representation. Some languages, such as FORTRAN 77, have a small fixed
set of types. For these languages, a small integer tag is both efficient and
sufficient. However, many modern languages have open-ended type sys-
tems. For these languages, the compiler writer needs to design a structure
that can represent arbitrary types.

If the type system is based on name equivalence, any number of simple
representations will suffice, as long as the compiler can use the rep-
resentation to trace back to a representation of the actual structure. If
the type system is based on structural equivalence, the representation of
the type must encode its structure. Most such systems build trees to rep-
resent types. They construct a tree for each type declaration and compare
tree structures to test for equivalence.

Each policy has strengths and weaknesses. Name equivalence assumes that
identical names occur as a deliberate act; in a large programming project,
this requires discipline to avoid unintentional clashes. Structural equiva-
lence assumes that interchangeable objects can be used safely in place of
one another; if some of the values have “special” meanings, this can cre-
ate problems. (Imagine two hypothetical, structurally identical types. The
first holds a system 1/0 control block, while the second holds the collection
of information about a bit-mapped image on the screen. Treating them as
distinct types would allow the compiler to detect a misuse—passing the 1/0
control block to a screen refresh routine—while treating them as the same
type would not.)

Inference Rules

In general, type inference rules specify, for each operator, the mapping
between the operand types and the result type. For some cases, the mapping
is simple. An assignment, for example, has one operand and one result. The
result, or left-hand side, must have a type that is compatible with the type
of the operand, or right-hand side. (In Pascal, the subrange 1..100 is com-
patible with the integers since any element of the subrange can be assigned
safely to an integer.) This rule allows assignment of an integer value to an
integer variable. It forbids assignment of a structure to an integer variable,
without an explicit conversion that makes sense of the operation.

The relationship between operand types and result types is often specified
as a recursive function on the type of the expression tree. The function
computes the result type of an operation as a function of the types of its
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operands. The functions might be specified in tabular form, similar to the
table in Figure 4.1. Sometimes, the relationship between operand types and
result types is specified by a simple rule. In Java, for example, adding two
integer types of different precision produces a result of the more precise
(longer) type.

The inference rules point out type errors. Mixed-type expressions may be
illegal. In FORTRAN 77, a program cannot add a double and a complex.
In Java, a program cannot assign a number to a character. These combi-
nations should produce a type error at compile time, along with a message
that indicates how the program is ill formed.

Some languages require the compiler to perform implicit conversions. The
compiler must recognize certain combinations of mixed-type expressions
and handle them by inserting the appropriate conversions. In FORTRAN,
adding an integer and a floating-point number forces conversion of the
integer to floating-point form before the addition. Similarly, Java mandates
implicit conversions for integer addition of values with different precision.
The compiler must coerce the less precise value to the form of the more
precise value before addition. A similar situation arises in Java with integer
assignment. If the right-hand side is less precise, it is converted to the more
precise type of the left-hand side. If, however, the left-hand side is less pre-
cise than the right-hand side, the assignment produces a type error unless the
programmer inserts an explicit cast operation to change its type and coerce
its value.

Declarations and Inference
As previously mentioned, many programming languages include a “declare
before use” rule. With mandatory declarations, each variable has a well-
defined type. The compiler needs a way to assign types to constants. Two
approaches are common. Either a constant’s form implies a specific type—
This scheme overloads 2 with different meanings  for example, 2 is an integer and 2.0 is a floating-point number—or the
in different contexts. Experience suggests that compiler infers a constant’s type from its usage—for example, sin(2)
programmers are good at understanding this . - . . . . .
. ) implies that 2 is a floating-point number, while x <« 2, for integer x,
kind of overloading. . . . . . . . .
implies that 2 is an integer. With declared types for variables, implied types
for constants, and a complete set of type-inference rules, the compiler can
assign types to any expression over variables and constants. Function calls
complicate the picture, as we shall see.

Some languages absolve the programmer from writing any declarations. In
these languages, the problem of type inference becomes substantially more
intricate. Section 4.5 describes some of the problems that this creates and
some of the techniques that compilers use to address them.
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CLASSIFYING TYPE SYSTEMS

Many terms are used to describe type systems. In the text, we have
introduced the terms strongly typed, untyped, and weakly typed languages.
Other distinctions between type systems and their implementations are
important.

Checked versus Unchecked Implementations The implementation of a pro-
gramming language may elect to perform enough checking to detect
and to prevent all runtime errors that result from misuse of a type. (This
may actually exclude some value-specific errors, such as division by zero.)
Such an implementation is called strongly checked. The opposite of a
strongly checked implementation is an unchecked implementation—one
that assumes a well-formed program. Between these poles lies a spectrum
of weakly checked implementations that perform partial checking.

Compile Time versus Runtime Activity A strongly typed language may have
the property that all inference and all checking can be done at com-
pile time. An implementation that actually does all this work at compile
time is called statically typed and statically checked. Some languages have
constructs that must be typed and checked at runtime. We term these
languages dynamically typed and dynamically checked. To confuse matters
further, of course, a compiler writer can implement a strongly typed, stat-
ically typed language with dynamic checking. Java is an example of a
language that could be statically typed and checked, except for an exe-
cution model that keeps the compiler from seeing all the source code at
once. This forces it to perform type inference as classes are loaded and to
perform some of the checking at runtime.

Inferring Types for Expressions

The goal of type inference is to assign a type to each expression that occurs
in a program. The simplest case for type inference occurs when the compiler
can assign a type to each base element in an expression—that is, to each
leaf in the parse tree for an expression. This requires declarations for all
variables, inferred types for all constants, and type information about all
functions.

Conceptually, the compiler can assign a type to each value in the expression
during a simple postorder tree walk. This should let the compiler detect every
violation of an inference rule, and report it at compile time. If the language
lacks one or more of the features that make this simple style of inference
possible, the compiler will need to use more sophisticated techniques. If
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compile time type inference becomes too difficult, the compiler writer may
need to move some of the analysis and checking to runtime.

Type inference for expressions, in this simple case, directly follows the
expression’s structure. The inference rules describe the problem in terms
of the source language. The evaluation strategy operates bottom up on the
parse tree. For these reasons, type inference for expressions has become a
classic example problem to illustrate context-sensitive analysis.

Interprocedural Aspects of Type Inference

Type inference for expressions depends, inherently, on the other procedures
that form the executable program. Even in the simplest type systems, expres-
sions contain function calls. The compiler must check each of those calls. It
must ensure that each actual parameter is type compatible with the corre-
sponding formal parameter. It must determine the type of any returned value
for use in further inference.

Type signature To analyze and understand procedure calls, the compiler needs a type sig-
a specification of the types of the formal nature for each function. For example, the strlen function in ¢’s standard
parameters and return value(s) of a function library takes an operand of type char  and returns an int that contains its

length in bytes, excluding the terminating character. In ¢, the programmer

Function prototype can record this fact with a function prototype that looks like:

The ¢ language includes a provision that lets the

programmer declare functions that are not unsigned int strlen(const char *s);

present. The programmer includes a skeleton

declaration, called a function prototype. This prototype asserts that str1en takes an argument of type char *, which

it does not modify, as indicated by the const attribute. The function returns
a nonnegative integer. Writing this in a more abstract notation, we might
say that

strlen : const char * — unsigned int

which we read as “strlen is a function that takes a constant-valued charac-
ter string and returns an unsigned integer.” As a second example, the classic
Scheme function fi1ter has the type signature

filter: (a—boolean) x list of « — list of

That is, filter is a function that takes two arguments. The first should be
a function that maps some type « into a boolean, written (¢ — boolean), and
the second should be a list whose elements are of the same type «. Given
arguments of those types, fi1ter returns a list whose elements have type «.
The function fi1ter exhibits parametric polymorphism: its result type is a
function of its argument types.
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To perform accurate type inference, the compiler needs a type signature for
every function. It can obtain that information in several ways. The compiler
can eliminate separate compilation, requiring that the entire program be pre-
sented for compilation as a unit. The compiler can require the programmer
to provide a type signature for each function; this usually takes the form of
mandatory function prototypes. The compiler can defer type checking until
either link time or runtime, when all such information is available. Finally,
the compiler writer can embed the compiler in a program-development sys-
tem that gathers the requisite information and makes it available to the
compiler on demand. All of these approaches have been used in real systems.

SECTION REVIEW

A type system associates with each value in the program some textual
name, a type, that represents a set of common properties held by all
values of that type. The definition of a programming language specifies
interactions between objects of the same type, such as legal operations
on values of a type, and between objects of different type, such as mixed-
type arithmetic operations. A well-designed type system can increase the
expressiveness of a programming language, allowing safe use of features
such as overloading. It can expose subtle errors in a program long before
they become puzzling runtime errors or wrong answers. It can let the
compiler avoid runtime checks that waste time and space.

A type system consists of a set of base types, rules for constructing
new types from existing ones, a method for determining equivalence
of two types, and rules for inferring the types of each expression in

a program. The notions of base types, constructed types, and type
equivalence should be familiar to anyone who has programmed in a
high-level language. Type inference plays a critical role in compiler
implementation.

[

Review Questions

1. For your favorite programming language, write down the base types
in its type system. What rules and constructs does the language allow
to build aggregate types? Does it provide a mechanism for creating a
procedure that takes a variable number of arguments, such as printf
in the C standard 1/0 library?

2. What kinds of information must the compiler have to ensure type
safety at procedure calls? Sketch a scheme based on the use of func-
tion prototypes. Sketch a scheme that can check the validity of those
function prototypes.
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4.3 THE ATTRIBUTE-GRAMMAR FRAMEWORK

One formalism that has been proposed for performing context-sensitive
analysis is the attribute grammar, or attributed context-free grammar. An
attribute grammar consists of a context-free grammar augmented by a set

Attribute of rules that specify computations. Each rule defines one value, or attribute,
avalue attached to one or more of the nodesina  in terms of the values of other attributes. The rule associates the attribute
parse tree with a specific grammar symbol; each instance of the grammar symbol that

occurs in a parse tree has a corresponding instance of the attribute. The rules
are functional; they imply no specific evaluation order and they define each
attribute’s value uniquely.

To make these notions concrete, consider a context-free grammar for
signed binary numbers. Figure 4.4 defines the grammar SBN = (T,NT,S,P).
SBN generates all signed binary numbers, such as -101, +11, -01, and
+11111001100. It excludes unsigned binary numbers, such as 10.

From SBN, we can build an attribute grammar that annotates Number with
the value of the signed binary number that it represents. To build an attribute
grammar from a context-free grammar, we must decide what attributes each
node needs, and we must elaborate the productions with rules that define
values for these attributes. For our attributed version of SBN, the following
attributes are needed:

Symbol Attributes
Number value

Sign negative

List position, value
Bit position, value

In this case, no attributes are needed for the terminal symbols.

Figure 4.5 shows the productions of SBN elaborated with attribution rules.
Subscripts are added to grammar symbols whenever a specific symbol

Number —  Sign List
Sign - + T = {+,-,0,1}
[ _
P=1{ rig —  List Bit NT = {Number, Sign, List, Bit}
| Bit
Bit 5 0 S = {Number}
| 1

M FIGURE 4.4 An Attribute Grammar for Signed Binary Numbers.
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Production Attribution Rules

1 Number — Sign List  List.position<0
if Sign.negative

then Number.value< -List.value

else Number.value<List.value

2 Sign—+ Sign.negative < false
Sign — - Sign.negative < true
4 List— Bit Bit.position<—List.position

List.value <—Bit.value
5 Listg — Listy Bit Listy . position<—Listy.position+1
Bit.position<«Listy.position
Listy.value < Listy.value+Bit.value
6 Bit—0 Bit.value <0

7 Bit—1 Bit.value < 2Bit.position

M FIGURE 4.5 Attribute Grammar for Signed Binary Numbers.

appears multiple times in a single production. This practice disambiguates
references to that symbol in the rules. Thus, the two occurrences of
List in production 5 have subscripts, both in the production and in the
corresponding rules.

The rules add attributes to the parse tree nodes by their names. An attribute
mentioned in a rule must be instantiated for every occurrence of that kind of
node.

Each rule specifies the value of one attribute in terms of literal constants
and the attributes of other symbols in the production. A rule can pass infor-
mation from the production’s left-hand side to its right-hand side; a rule
can also pass information in the other direction. The rules for production
4 pass information in both directions. The first rule sets Bit.position to
List.position, while the second rule sets List.value to Bit.value. Sim-
pler attribute grammars can solve this particular problem; we have chosen
this one to demonstrate particular features of attribute grammars.

Given a string in the SBN grammar, the attribution rules set Number . value
to the decimal value of the binary input string. For example, the string -101
causes the attribution shown in Figure 4.6a. (The names for value, number,
and position are truncated in the figure.) Notice that Number.value has
the value -5.

To evaluate an attributed parse tree for some sentence in L(SBN), the
attributes specified in the various rules are instantiated for each node in



184 CHAPTER 4 Context-Sensitive Analysis

Synthesized attribute

an attribute defined wholly in terms of the
attributes of the node, its children, and constants
Inherited attribute

an attribute defined wholly in terms of the
node’s own attributes and those of its siblings or
its parent in the parse tree (plus constants)

The rule node.field <— 1 can be treated as either
synthesized or inherited.

Number,,._5

S’gnneg:tr‘ue

(a) Parse Tree for-101

the parse tree. This creates, for example, an attribute instance for both
value and position in each List node. Each rule implicitly defines a set
of dependences; the attribute being defined depends on each argument to the
rule. Taken over the entire parse tree, these dependences form an attribute-
dependence graph. Edges in the graph follow the flow of values in the
evaluation of a rule; an edge from node;.field; to nodey.field; indicates that
the rule defining nodey.field; uses the value of node;.field; as one of its
inputs. Figure 4.6b shows the attribute-dependence graph induced by the
parse tree for the string -101.

The bidirectional flow of values that we noted earlier (in, for example, pro-
duction 4) shows up in the dependence graph, where arrows indicate both
flow upward toward the root (Number) and flow downward toward the
leaves. The List nodes show this effect most clearly. We distinguish between
attributes based on the direction of value flow. Synthesized attributes are
defined by bottom-up information flow; a rule that defines an attribute for
the production’s left-hand side creates a synthesized attribute. A synthesized
attribute can draw values from the node itself, its descendants in the parse
tree, and constants. Inherited attributes are defined by top-down and lateral
information flow; a rule that defines an attribute for the production’s right-
hand side creates an inherited attribute. Since the attribution rule can name
any symbol used in the corresponding production, an inherited attribute can
draw values from the node itself, its parent and its siblings in the parse tree,

Number, .5

/ \ pos:0

pos:0 P i

List 4.5 S’gnneg:true Listyq1-5
pos:1 ., pos:0 . pos:l > pos:0
B’tvall List val:4 Bit val-l
., pos:1 . pos:2 ., pos:1
Bit val:0 List Ial:4 Bit val:0 :I
., pos:2
Bit yar:4 :|
0 1 - 1 0 1

(b) Dependence Graph for-101

M FIGURE 4.6 Attributed Tree for the Signed Binary Number —101.
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and constants. Figure 4.6b shows that the value and negative attributes are
synthesized, while the position attribute is inherited.

Any scheme for evaluating attributes must respect the relationships encoded
implicitly in the attribute-dependence graph. Each attribute must be defined
by some rule. If that rule depends on the values of other attributes, it cannot
be evaluated until all those values have been defined. If the rule depends on
no other attribute values, then it must produce its value from a constant or
some external source. As long as no rule relies on its own value, the rules
should uniquely define each value.

Of course, the syntax of the attribution rules allows a rule to reference its  Circularity

own result, either directly or indirectly. An attribute grammar containing  Anattribute grammaris circularifit can, for some
such rules is ill formed. We say that such rules are circular because they ~ InPuts, createa cyclicdependence graph.

can create a cycle in the dependence graph. For the moment, we will ignore

circularity; Section 4.3.2 addresses this issue.

The dependence graph captures the flow of values that an evaluator must
respect in evaluating an instance of an attributed tree. If the grammar is
noncircular, it imposes a partial order on the attributes. This partial order
determines when the rule defining each attribute can be evaluated. Eval-
uation order is unrelated to the order in which the rules appear in the
grammar.

Consider the evaluation order for the rules associated with the uppermost
List node—the right child of Number. The node results from applying pro-
duction five, List — List Bit; applying that production adds three rules to
the evaluation. The two rules that set inherited attributes for the List node’s
children must execute first. They depend on the value of List. position and
set the position attributes for the node’s subtrees. The third rule, which
sets the List node’s value attribute, cannot execute until the two subtrees
both have defined value attributes. Since those subtrees cannot be evaluated
until the first two rules at the List node have been evaluated, the evaluation
sequence will include the first two rules early and the third rule much later.

To create and use an attribute grammar, the compiler writer determines a
set of attributes for each symbol in the grammar and designs a set of rules
to compute their values. These rules specify a computation for any valid
parse tree. To create an implementation, the compiler writer must create an
evaluator; this can be done with an ad hoc program or by using an evalua-
tor generator—the more attractive option. The evaluator generator takes as
input the specification for the attribute grammar. It produces the code for an
evaluator as its output. This is the attraction of attribute grammars for the
compiler writer; the tools take a high-level, nonprocedural specification and
automatically produce an implementation.
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One critical insight behind the attribute-grammar formalism is the notion
that the attribution rules can be associated with productions in the context-
free grammar. Since the rules are functional, the values that they produce
are independent of evaluation order, for any order that respects the rela-
tionships embodied in the attribute-dependence graph. In practice, any order
that evaluates a rule only after all of its inputs have been defined respects the
dependences.

4.3.17 Evaluation Methods

The attribute-grammar model has practical use only if we can build eval-
uators that interpret the rules to evaluate an instance of the problem
automatically—a specific parse tree, for example. Many attribute evalua-
tion techniques have been proposed in the literature. In general, they fall
into three major categories.

1. Dynamic Methods These techniques use the structure of a particular
attributed parse tree to determine the evaluation order. Knuth’s original
paper on attribute grammars proposed an evaluator that operated in a
manner similar to a dataflow computer architecture—each rule “fired”
as soon as all its operands were available. In practical terms, this might
be implemented using a queue of attributes that are ready for evaluation.
As each attribute is evaluated, its successors in the attribute dependence
graph are checked for “readiness” (see Section 12.3). A related scheme
would build the attribute dependence graph, topologically sort it, and
use the topological order to evaluate the attributes.

2. Oblivious Methods In these methods, the order of evaluation is
independent of both the attribute grammar and the particular attributed
parse tree. Presumably, the system’s designer selects a method deemed
appropriate for both the attribute grammar and the evaluation
environment. Examples of this evaluation style include repeated
left-to-right passes (until all attributes have values), repeated
right-to-left passes, and alternating left-to-right and right-to-left passes.
These methods have simple implementations and relatively small
runtime overheads. They lack, of course, any improvement that can be
derived from knowledge of the specific tree being attributed.

3. Rule-Based Methods Rule-based methods rely on a static analysis of the
attribute grammar to construct an evaluation order. In this framework,
the evaluator relies on grammatical structure; thus, the parse tree guides
the application of the rules. In the signed binary number example, the
evaluation order for production 4 should use the first rule to set
Bit.position, recurse downward to Bit, and, on return, use Bit.value to
set List.value. Similarly, for production 5, it should evaluate the first



4.3 The Attribute-Grammar Framework 187

two rules to define the position attributes on the right-hand side, then
recurse downward to each child. On return, it can evaluate the third rule
to set the List.value field of the parent List node. Tools that perform the
necessary static analysis offline can produce fast rule-based evaluators.

4.3.2 Circularity

Circular attribute grammars can give rise to cyclic attribute-dependence
graphs. Our models for evaluation fail when the dependence graph contains
a cycle. A failure of this kind in a compiler causes serious problems—for
example, the compiler might not be able to generate code for its input. The
catastrophic impact of cycles in the dependence graph suggests that this issue
deserves close attention.

If a compiler uses attribute grammars, it must handle circularity in an
appropriate way. Two approaches are possible.

1. Avoidance The compiler writer can restrict the attribute grammar to a
class that cannot give rise to circular dependence graphs. For example,
restricting the grammar to use only synthesized and constant attributes
eliminates any possibility of a circular dependence graph. More general
classes of noncircular attribute grammars exist; some, like strongly
noncircular attribute grammars, have polynomial-time tests for
membership.

2. Evaluation The compiler writer can use an evaluation method that
assigns a value to every attribute, even those involved in cycles. The
evaluator might iterate over the cycle and assign appropriate or default
values. Such an evaluator would avoid the problems associated with a
failure to fully attribute the tree.

In practice, most attribute-grammar systems restrict their attention to non-
circular grammars. The rule-based evaluation methods may fail to construct
an evaluator if the attribute grammar is circular. The oblivious methods and
the dynamic methods will attempt to evaluate a circular dependence graph;
they will simply fail to define some of the attribute instances.

4.3.3 Extended Examples

To better understand the strengths and weaknesses of attribute grammars as
a tool, we will work through two more detailed examples that might arise
in a compiler: inferring types for expression trees in a simple, Algol-like
language, and estimating the execution time, in cycles, for a straight-line
sequence of code.
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Inferring Expression Types

Any compiler that tries to generate efficient code for a typed language must
confront the problem of inferring types for every expression in the program.
This problem relies, inherently, on context-sensitive information; the type
associated with a name or num depends on its identity—its textual name—
rather than its syntactic category.

Consider a simplified version of the type inference problem for expressions
derived from the classic expression grammar given in Chapter 3. Assume
that the expressions are represented as parse trees, and that any node repre-
senting a name or num already has a type attribute. (We will return to the
problem of getting the type information into these type attributes later in
the chapter.) For each arithmetic operator in the grammar, we need a func-
tion that maps the two operand types to a result type. We will call these
functions Fy, F_, Fx, and F_; they encode the information found in tables
such as the one shown in Figure 4.1. With these assumptions, we can write
simple attribution rules that define a type attribute for each node in the tree.
Figure 4.7 shows the attribution rules.

If a has type integer (denoted 7) and c has type real (denoted R), then
this scheme generates the following attributed parse tree for the input string

a-2Xc:
Expr; type: R
Exprtype, T - Termtype..R
Termtype: T Term,ype: 7 x <name,Clyue-r

| |

name, a>qype: 7 <NUM, 2246 7

The leaf nodes have their type attributes initialized appropriately. The
remainder of the attributes are defined by the rules from Figure 4.7, with
the assumption that 7, F_, Fx, and F_ reflect the FORTRAN 77 rules.

A close look at the attribution rules shows that all the attributes are synthe-
sized attributes. Thus, all the dependences flow from a child to its parent
in the parse tree. Such grammars are sometimes called S-attributed gram-
mars. This style of attribution has a simple, rule-based evaluation scheme.
It meshes well with bottom-up parsing; each rule can be evaluated when
the parser reduces by the corresponding right-hand side. The attribute-
grammar paradigm fits this problem well. The specification is short. It is
easily understood. It leads to an efficient evaluator.

Careful inspection of the attributed expression tree shows two cases in which
an operation has an operand whose type is different from the type of the
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Production Attribution Rules

Expro — Expri+ Term Expro.type < Fi (Expri.type,Term.type)
| Expri —Term Expro.type < F_ (Expri.type,Term.type)
|  Term Exprg.type <« Term.type

Termg — Termy Factor Termgy.type <« Fyx (Termy.type,Factor.type)
| Termy Factor Termgy.type <« F-(Termq.type,Factor.type)

| Factor Termg.type <« Factor.type
Factor — (Expr) Factor.type < Expr.type

| num num. type is already defined

| name name. type is already defined

M FIGURE 4.7 Attribute Grammar to Infer Expression Types.

operation’s result. In FORTRAN 77, this requires the compiler to insert a con-
version operation between the operand and the operator. For the 7erm node
that represents the multiplication of 2 and c, the compiler would convert 2
from an integer representation to a real representation. For the Expr node
at the root of the tree, the compiler would convert a from an integer to

a real. Unfortunately, changing the parse tree does not fit well into the
attribute-grammar paradigm.

To represent these conversions in the attributed tree, we could add an
attribute to each node that holds its converted type, along with rules to
set the attributes appropriately. Alternatively, we could rely on the process
that generates code from the tree to compare the two types—parent and
child—during the traversal and insert the necessary conversion. The former
approach adds some work during attribute evaluation, but localizes all of the
information needed for a conversion to a single parse-tree node. The latter
approach defers that work until code generation, but does so at the cost of
distributing the knowledge about types and conversions across two separate
parts of the compiler. Either approach will work; the difference is largely a
matter of taste.

A Simple Execution-Time Estimator

As a second example, consider the problem of estimating the execution
time of a sequence of assignment statements. We can generate a sequence

of assignments by adding three new productions to the classic expression
grammar:

Block — Block Assign
|  Assign

Assign  — name = Expr;
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Production Attribution Rules

Blocko — Blocky Assign Blockg . cost <— Blockq . cost + Assign.cost }

Assign name = Expr;

{

| Assign { Blocky . cost <— Assign.cost }
{ Assign. cost < Cost(store) + Expr.cost }
{

Expro Expry 4+ Term Expro.cost < Expry.cost + Cost(add) + Term.cost }
Expry — Term { Exprg.cost <— Expry.cost + Cost(sub) + Term.cost }

Term { Exprg.cost < Term.cost }

Term, = Factor { Termg.cost < Termy.cost + Cost(div) + Factor.cost }
Factor { Termg . cost < Factor.cost }
Factor (Expr) { Factor.cost < Expr.cost}
num { Factor.cost < Cost(loadl) }
{

—

—_

|

|

Termg — Term; x Factor { Termg.cost <— Termq.cost + Cost(mult) + Factor.cost }
|

|

—

|

| name

Factor.cost < Cost(load) }

M FIGURE 4.8 Simple Attribute Grammar to Estimate Execution Time.

where Expr is from the expression grammar. The resulting grammar is sim-
plistic in that it allows only simple identifiers as variables and it contains no
function calls. Nonetheless, it is complex enough to convey the issues that
arise in estimating runtime behavior.

Figure 4.8 shows an attribute grammar that estimates the execution time of a
block of assignment statements. The attribution rules estimate the total cycle
count for the block, assuming a single processor that executes one operation
at a time. This grammar, like the one for inferring expression types, uses
only synthesized attributes. The estimate appears in the cost attribute of
the topmost Block node of the parse tree. The methodology is simple. Costs
are computed bottom up; to read the example, start with the productions for
Factor and work your way up to the productions for Block. The function
Cost returns the latency of a given 1LOC operation.

Improving the Execution-Cost Estimator

To make this example more realistic, we can improve its model for how
the compiler handles variables. The initial version of our cost-estimating
attribute grammar assumes that the compiler naively generates a separate
1oad operation for each reference to a variable. For the assignment x=y +y,
the model counts two load operations for y. Few compilers would generate
a redundant load for y. More likely, the compiler would generate a sequence
such as:
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ToadAl rarp, @ = ry
add Py, ry = Iy
storeAl ry = Tlarp. @x

that loads y once. To approximate the compiler’s behavior better, we can
modify the attribute grammar to charge only a single load for each variable
used in the block. This requires more complex attribution rules.

To account for loads more accurately, the rules must track references to each
variable by the variable’s name. These names are extra-grammatical, since
the grammar tracks the syntactic category name rather than individual names
such as x, y, and z. The rule for name should follow the general outline:

if ( name has not been loaded )
then Factor.cost <« Cost(load);
else Factor.cost < 0;

The key to making this work is the test “name has not been loaded.”

To implement this test, the compiler writer can add an attribute that holds
the set of all variables already loaded. The production Block — Assign can
initialize the set. The rules must thread the expression trees to pass the set
through each assignment. This suggests augmenting each node with two sets,
Before and After. The Before set for a node contains the lexemes of all
names that occur earlier in the Block; each of these must have been loaded
already. A node’s After set contains all the names in its Before set, plus
any names that would be loaded in the subtree rooted at that node.

The expanded rules for Factor are shown in Figure 4.9. The code assumes
that it can obtain the textual name—the lexeme—of each name. The first
production, which derives ( Expr ), copies the Before set down into the
Expr subtree and copies the After set up to the Factor. The second pro-
duction, which derives num, simply copies its parent’s Before set into its
parent’s After set. num must be a leaf in the tree; therefore, no further actions
are needed. The final production, which derives name, performs the critical
work. It tests the Before set to determine whether or not a load is needed
and updates the parent’s cost and After attributes accordingly.

To complete the specification, the compiler writer must add rules that copy
the Before and After sets around the parse tree. These rules, sometimes
called copy rules, connect the Before and After sets of the various Factor
nodes. Because the attribution rules can reference only local attributes—
defined as the attributes of a node’s parent, its siblings, and its children—
the attribute grammar must explicitly copy values around the parse tree to
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Production Attribution Rules

Factor — (Expr) { Factor.cost <—Expr.cost;
Expr.Before < Factor.Before;
Factor.After < Expr.After}

| num { Factor.cost «<—Cost(Toadl);
Factor.After <—Factor.Before}
| name {if (name.lexeme ¢ Factor.Before)
then

Factor.cost <— Cost(load);
Factor.After <—Factor.Before
U {name. lexeme}
else
Factor.cost < 0;
Factor.After < Factor.Before}

M FIGURE 4.9 Rules to Track Loads in Factor Productions.

ensure that they are local. Figure 4.10 shows the required rules for the other
productions in the grammar. One additional rule has been added; it initializes
the Before set of the first Assign statement to ¢.

This model is much more complex than the simple model. It has over three
times as many rules; each rule must be written, understood, and evaluated.
It uses both synthesized and inherited attributes, so the simple bottom-up
evaluation strategy will no longer work. Finally, the rules that manipulate
the Before and After sets require a fair amount of attention—the kind of
low-level detail that we would hope to avoid by using a system based on
high-level specifications.

Back to Inferring Expression Types

In the initial discussion about inferring expression types, we assumed that
the attributes name.type and num.type were already defined by some exter-
nal mechanism. To fill in those values using an attribute grammar, the
compiler writer would need to develop a set of rules for the portion of the
grammar that handles declarations.

Those rules would need to record the type information for each variable
in the productions associated with the declaration syntax. The rules would
need to collect and aggregate that information so that a small set of attributes
contained the necessary information on all the declared variables. The rules
would need to propagate that information up the parse tree to a node that is
an ancestor of all the executable statements, and then to copy it downward
into each expression. Finally, at each leaf that is a name or num, the rules
would need to extract the appropriate facts from the aggregated information.
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Production Attribution Rules

Blocky — Blocky Assign

—_—

Blockg . cost <— Block, .cost + Assign . cost;
Assign . Before < Blocky . After;

Blockg . After < Assign . After

| Assign

—_~—

Blockg .cost < Assign . cost;
Assign . Before < ;
Blockg . After < Assign . After }

Assign — name = Expr;

—_

Assign . cost <— Cost(store) + Expr.cost;
Expr.Before < Assign . Before;
Assign . After < Expr . After }

Expro — Expri + Term

—_~—

Exprg .cost <— Expry.cost + Cost(add) + Term.cost;
Expr, . Before < Expry . Before;
Term . Before < Expry . After;
Exprg . After <— Term . After }
| Expri — Term { Exprg.cost <— Expry.cost + Cost(sub) + Term.cost;
Expry . Before <— Exprg . Before;
Term .Before < Expr, . After;
Expro . After < Term . After }
| Term { Exprg .cost <— Term. cost;
Term . Before < Exprg . Before;
Exprg . After <— Term . After }
Termg — Term; x Factor { Termg.cost < Term;.cost + Cost(mult) + Factor. cost;
Term, . Before <— Termq .Before;
Factor . Before < Term . After;
Termq . After < Factor . After }
| Termy = Factor { Termq.cost < Termj.cost + Cost(div) + Factor.cost;
Term; . Before <— Termq .Before;
Factor . Before < Term, . After;
Termy . After < Factor . After }
| Factor { Termg .cost < Factor. cost;
Factor . Before < Termq . Before;
Termq . After <— Factor . After }

M FIGURE 4.10 Copy Rules to Track Loads.

The resulting set of rules would be similar to those that we developed for
tracking loads but would be more complex at the detailed level. These rules
also create large, complex attributes that must be copied around the parse
tree. In a naive implementation, each instance of a copy rule would create a
new copy. Some of these copies could be shared, but many of the versions
created by merging information from multiple children will differ (and, thus,
need to be distinct copies). The same problem arises with the Before and
After sets in the previous example.
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A Final Improvement to the Execution-Cost Estimator

While tracking loads improved the fidelity of the estimated execution costs,
many further refinements are possible. Consider, for example, the impact of
finite register sets on the model. So far, our model has assumed that the target
computer provides an unlimited set of registers. In reality, computers provide
small register sets. To model the capacity of the register set, the estimator
could limit the number of values allowed in the Before and After sets.

As a first step, we must replace the implementation of Before and After.
They were implemented with arbitrarily sized sets; in this refined model,
the sets should hold exactly k values, where k is the number of registers
available to hold the values of variables. Next, we must rewrite the rules
for the production Factor — name to model register occupancy. If a value
has not been loaded, and a register is available, it charges for a simple load.
If a load is needed, but no register is available, it can evict a value from
some register and charge for the load. The choice of which value to evict
is complex; it is discussed in Chapter 13. Since the rule for Assign always
charges for a store, the value in memory will be current. Thus, no store is
needed when a value is evicted. Finally, if the value has already been loaded
and is still in a register, then no cost is charged.

This model complicates the rule set for Factor — name and requires a
slightly more complex initial condition (in the rule for Block — Assign).
It does not, however, complicate the copy rules for all the other productions.
Thus, the accuracy of the model does not add significantly to the complexity
of using an attribute grammar. All of the added complexity falls into the few
rules that directly manipulate the model.

4.3.4 Problems with the Attribute-Grammar Approach

The preceding examples illustrate many of the computational issues that
arise in using attribute grammars to perform context-sensitive computations
on parse trees. Some of these pose particular problems for the use of attribute
grammars in a compiler. In particular, most applications of attribute gram-
mars in the front end of a compiler assume that the results of attribution
must be preserved, typically in the form of an attributed parse tree. This
section details the impact of the problems that we have seen in the preceding
examples.

Handling Nonlocal Information

Some problems map cleanly onto the attribute-grammar paradigm, particu-
larly those problems in which all information flows in the same direction.
However, problems with a complex pattern of information flow can be
difficult to express as attribute grammars. An attribution rule can name only
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values associated with a grammar symbol that appears in the same produc-
tion; this constrains the rule to using only nearby, or local, information. If the
computation requires a nonlocal value, the attribute grammar must include
copy rules to move those values to the points where they are used.

Copy rules can swell the size of an attribute grammar; compare Figures 4.8,
4.9, and 4.10. The implementor must write each of those rules. In the evalua-
tor, each of the rules must be executed, creating new attributes and additional
work. When information is aggregated, as in the declare-before-use rule or
the framework for estimating execution times, a new copy of the informa-
tion must be made each time a rule changes an aggregate’s value. These
copy rules add another layer of work to the tasks of writing and evaluating
an attribute grammar.

Storage Management

For realistic examples, evaluation produces large numbers of attributes. The
use of copy rules to move information around the parse tree can multiply
the number of attribute instances that evaluation creates. If the grammar
aggregates information into complex structures—to pass declaration infor-
mation around the parse tree, for example—the individual attributes can be
large. The evaluator must manage storage for attributes; a poor storage-
management scheme can have a disproportionately large negative impact
on the resource requirements of the evaluator.

If the evaluator can determine which attribute values can be used after eval-
uation, it may be able to reuse some of the attribute storage by reclaiming
space for values that can never again be used. For example, an attribute
grammar that evaluated an expression tree to a single value might return
that value to the process that invoked it. In this scenario, the intermediate
values calculated at interior nodes might be dead—never used again—and,
thus, candidates for reclamation. On the other hand, if the tree resulting from
attribution is persistent and subject to later inspection—as might be the case
in an attribute grammar for type inference—then the evaluator must assume
that a later phase of the compiler can traverse the tree and inspect arbitrary
attributes. In this case, the evaluator cannot reclaim the storage for any of
the attribute instances.

This problem reflects a fundamental clash between the functional nature of
the attribute-grammar paradigm and the imperative use to which it might
be put in the compiler. The possible uses of an attribute in later phases
of the compiler have the effect of adding dependences from that attribute
to uses not specified in the attribute grammar. This bends the functional
paradigm and removes one of its strengths: the ability to automatically
manage attribute storage.
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Instantiating the Parse Tree

An attribute grammar specifies a computation relative to the parse tree for a
valid sentence in the underlying grammar. The paradigm relies, inherently,
on the availability of the parse tree. The evaluator might simulate the parse
tree, but it must behave as if the parse tree exists. While the parse tree is
useful for discussions of parsing, few compilers actually build a parse tree.

Some compilers use an abstract syntax tree (AST) to represent the program
being compiled. The AsT has the essential structure of the parse tree but
eliminates many of the internal nodes that represent nonterminal symbols
in the grammar (see the description starting on page 226 of Section 5.2.1).
If the compiler builds an AST, it could use an attribute grammar tied to a
grammar for the AST. However, if the compiler has no other use for the AST,
then the programming effort and compile-time cost associated with building
and maintaining the AST must be weighed against the benefits of using the
attribute-grammar formalism.

Locating the Answers

One final problem with attribute-grammar schemes for context-sensitive
analysis is more subtle. The result of attribute evaluation is an attributed
tree. The results of the analysis are distributed over that tree, in the form
of attribute values. To use these results in later passes, the compiler must
traverse the tree to locate the desired information.

The compiler can use carefully constructed traversals to locate a particu-
lar node, which requires walking from the root of the parse tree down to
the appropriate location—on each access. This makes the code both slower
and harder to write, because the compiler must execute each of these traver-
sals and the compiler writer must construct each of them. The alternative is
to copy the important answers to a point in the tree where they are easily
found, typically the root. This introduces more copy rules, exacerbating that
problem.

Breakdown of the Functional Paradigm

One way to address all of these problems is to add a central repository for
attributes. In this scenario, an attribute rule can record information directly
into a global table, where other rules can read the information. This hybrid
approach can eliminate many of the problems that arise from nonlocal infor-
mation. Since the table can be accessed from any attribution rule, it has the
effect of providing local access to any information already derived.

Adding a central repository for facts complicates matters in another way.
If two rules communicate through a mechanism other than an attribution



4.3 The Attribute-Grammar Framework 197

rule, the implicit dependence between them is removed from the attribute
dependence graph. The missing dependence should constrain the evalua-
tor to ensure that the two rules are processed in the correct order; without
it, the evaluator may be able to construct an order that, while correct for
the grammar, has unintended behavior because of the removed constraint.
For example, passing information between the declaration syntax and an
executable expression through a table might allow the evaluator to process
declarations after some or all of the expressions that use the declared vari-
ables. If the grammar uses copy rules to propagate that same information,
those rules constrain the evaluator to orders that respect the dependences
embodied by those copy rules.

SECTION REVIEW

Attribute grammars provide a functional specification that can

be used to solve a variety of problems, including many of the
problems that arise in performing context-sensitive analysis. In
the attribute-grammar approach, the compiler writer produces
succinct rules to describe the computation; the attribute-grammar
evaluator then provides the mechanisms to perform the actual
computation. A high-quality attribute-grammar system would
simplify the construction of the semantic elaboration section of a
compiler.

The attribute-grammar approach has never achieved widespread
popularity for a number of mundane reasons. Large problems, such

as the difficulty of performing nonlocal computation and the need to
traverse the parse tree to discover answers to simple questions, have
discouraged the adoption of these ideas. Small problems, such as space
management for short-lived attributes, evaluator efficiency, and the lack
of widely-available, open-source attribute-grammar evaluators have also
made these tools and techniques less attractive.

[
Review Questions
1. From the “four function calculator” grammar given in the margin,
construct an attribute-grammar scheme that attributes each Calc
. . . . . Expr — Expr+ Term
node with the specified computation, displaying the answer on each W I
xpr — Term
reduction to Expr. | Telr)m
2. The “define-before-use” rule specifies that each variable used in a pro-

. K Term — Term x num
cedure must be declared before it appears in the text. Sketch an | Term<num
attribute-grammar scheme for checking that a procedure conforms | num '
with this rule. Is the problem easier if the language requires that all
declarations precede any executable statement?

(alc — Expr

Four Function Calculator
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4.4 AD HOC SYNTAX-DIRECTED TRANSLATION

The rule-based evaluators for attribute grammars introduce a powerful idea
that serves as the basis for the ad hoc techniques used for context-sensitive
analysis in many compilers. In the rule-based evaluators, the compiler writer
specifies a sequence of actions that are associated with productions in the
grammar. The underlying observation, that the actions required for context-
sensitive analysis can be organized around the structure of the grammar,
leads to a powerful, albeit ad hoc, approach to incorporating this kind of
analysis into the process of parsing a context-free grammar. We refer to this
approach as ad hoc syntax-directed translation.

In this scheme, the compiler writer provides snippets of code that execute
at parse time. Each snippet, or action, is directly tied to a production in the
grammar. Each time the parser recognizes that it is at a particular place in the
grammar, the corresponding action is invoked to perform its task. To imple-
ment this in a top-down, recursive-descent parser, the compiler writer simply
adds the appropriate code to the parsing routines. The compiler writer has
complete control over when the actions execute. In a bottom-up, shift-reduce
parser, the actions are performed each time the parser performs a reduce
action. This is more restrictive, but still workable.

To make this concrete, consider reformulating the signed binary number
example in an ad hoc syntax-directed translation framework. Figure 4.11
shows one such framework. Each grammar symbol has a single value asso-
ciated with it, denoted val in the code snippets. The code snippet for each
rule defines the value associated with the symbol on the rule’s left-hand side.
Rule 1 simply multiplies the value for Sign with the value for List. Rules 2
and 3 set the value for Sign appropriately, just as rules 6 and 7 set the value
for each instance of Bit. Rule 4 simply copies the value from Bif to List. The
real work occurs in rule 5, which multiplies the accumulated value of the
leading bits (in List. vaT) by two, and then adds in the next bit.

So far, this looks quite similar to an attribute grammar. However, it has two
key simplifications. Values flow in only one direction, from leaves to root.
It allows only a single value per grammar symbol. Even so, the scheme in
Figure 4.11 correctly computes the value of the signed binary number. It
leaves that value at the root of the tree, just like the attribute grammar for
signed binary numbers.

These two simplifications make possible an evaluation method that works
well with a bottom-up parser, such as the Lr(1) parsers described in Chap-
ter 3. Since each code snippet is associated with the right-hand side of a
specific production, the parser can invoke the action each time it reduces by
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Production Code Snippet
1 Number — Sign List ~ Number. val < Sign.val x List.val
2 Sign — + Sign.val <1
3 Sign - - Sign.val < -1
4 List — Bit List.val < Bit.val
5 Listgy — Listy Bit Listg.val < 2x Listy.val+ Bit.val
6 Bit — 0 Bit.val < 0
7 Bit - 1 Bit.val < 1

M FIGURE 4.11 Ad Hoc Syntax-Directed Translation for Signed Binary Numbers.

that production. This requires minor modifications to the reduce action in
the skeleton LR(1) parser shown in Figure 3.15.

else if Action[s,word] = “reduce A—pB” then
invoke the appropriate reduce action
pop 2 X |B| symbols
s <« top of stack
push A
push Goto[s,A]

The parser generator can gather the syntax-directed actions together, embed
them in a case statement that switches on the number of the production being
reduced, and place the case statement just before it pops the right-hand side
from the stack.

The translation scheme shown in Figure 4.11 is simpler than the scheme used
to explain attribute grammars. Of course, we can write an attribute grammar
that applies the same strategy. It would use only synthesized attributes. It
would have fewer attribution rules and fewer attributes than the one shown
in Figure 4.5. We chose the more complex attribution scheme to illustrate
the use of both synthesized and inherited attributes.

44.1 Implementing Ad Hoc Syntax-Directed
Translation

To make ad hoc syntax-directed translation work, the parser must include
mechanisms to pass values from their definitions in one action to their uses
in another, to provide convenient and consistent naming, and to allow for
actions that execute at other points in the parse. This section describes
mechanisms for handling these issues in a bottom-up, shift-reduce parser.
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Analogous ideas will work for top-down parsers. We adopt a notation intro-
duced in the Yacc system, an early and popular LALR(1) parser generator
distributed with the Unix operating system. The Yacc notation has been
adopted by many subsequent systems.

Communicating between Actions

To pass values between actions, the parser must have a methodology for
allocating space to hold the values produced by the various actions. The
mechanism must make it possible for an action that uses a value to find it.
An attribute grammar associates the values (attributes) with nodes in the
parse tree; tying the attribute storage to the tree nodes’ storage makes it pos-
sible to find attribute values in a systematic way. In ad hoc syntax-directed
translation, the parser may not construct the parse tree. Instead, the parser
can integrate the storage for values into its own mechanism for tracking the
state of the parse—its internal stack.

Recall that the skeleton Lr(1) parser stored two values on the stack for each
grammar symbol: the symbol and a corresponding state. When it recognizes
a handle, such as a List Bit sequence to match the right-hand side of rule 5,
the first pair on the stack represents the Bit. Underneath that lies the pair
representing the Listz. We can replace these (symbol, state) pairs with triples,
(value, symbol, state). This provides a single value attribute per grammar
symbol—precisely what the simplified scheme needs. To manage the stack,
the parser pushes and pops more values. On a reduction by A— B, it pops
3 X |B| items from the stack, rather than 2 x |B] items. It pushes the value
along with the symbol and state.

This approach stores the values at easily computed locations relative to
the top of the stack. Each reduction pushes its result onto the stack as part of
the triple that represents the left-hand side. The action reads the values for
the right-hand side from their relative positions in the stack; the i’ symbol
on the right-hand side has its value in the i’" triple from the top of the stack.
Values are restricted to a fixed size; in practice, this limitation means that
more complex values are passed using pointers to structures.

To save storage, the parser could omit the actual grammar symbols from
the stack. The information necessary for parsing is encoded in the state.
This shrinks the stack and speeds up the parse by eliminating the opera-
tions that stack and unstack those symbols. On the other hand, the grammar
symbol can help in error reporting and in debugging the parser. This trade-
off is usually decided in favor of not modifying the parser that the tools
produce—such modifications must be reapplied each time the parser is
regenerated.
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Naming Values

To simplify the use of stack-based values, the compiler writer needs a nota-
tion for naming them. Yacc introduced a concise notation to address this
problem. The symbol $$ refers to the result location for the current pro-
duction. Thus, the assignment $$ = 0; would push the integer value zero
as the result corresponding to the current reduction. This assignment could
implement the action for rule 6 in Figure 4.11. For the right-hand side, the
symbols $1, $2, ..., $n refer to the locations for the first, second, through

n'" symbols in the right-hand side, respectively.

Rewriting the example from Figure 4.11 in this notation produces the
following specification:

Production Code Snippet
1 Number — SignlList $$ < $1x$S2
2 Sign — + SS «— 1
3 Sign - - $S «— —1
4 List — Bit $S <« $1I
5 Listp — Listy Bit $§ «— 2xS1+82
6 Bit - 0 S <~ 0
7 Bit — 1 $S «— 1

Notice how compact the code snippets are. This scheme has an efficient
implementation; the symbols translate directly into offsets from the top of
the stack. The notation $1 indicates a location 3 x |B] slots below the top of
the stack, while a reference to $i designates the location 3 x (|8] — i+ 1)
slots from the top of the stack. Thus, the positional notation allows the action
snippets to read and write the stack locations directly.

Actions at Other Points in the Parse

Compiler writers might also need to perform an action in the middle of a
production or on a shift action. To accomplish this, compiler writers can
transform the grammar so that it performs a reduction at each point where an
action is needed. To reduce in the middle of a production, they can break the
production into two pieces around the point where the action should execute.
A higher-level production that sequences the first part, then the second part,
is added. When the first part reduces, the parser invokes the action. To force
actions on shifts, a compiler writer can either move them into the scanner
or add a production to hold the action. For example, to perform an action
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whenever the parser shifts the terminal symbol Bif, a compiler writer can
add a production

ShiftedBit — Bit

and replace every occurrence of Bit with ShiftedBit. This adds an extra
reduction for every terminal symbol. Thus, the additional cost is directly
proportional to the number of terminal symbols in the program.

4.4.2 Examples

To understand how ad hoc syntax-directed translation works, consider
rewriting the execution-time estimator using this approach. The primary
drawback of the attribute-grammar solution lies in the proliferation of rules
to copy information around the tree. This creates many additional rules in
the specification and duplicates attribute values at many nodes.

To address these problems in an ad hoc syntax-directed translation scheme,
the compiler writer typically introduces a central repository for information
about variables, as suggested earlier. This eliminates the need to copy values
around the trees. It also simplifies the handling of inherited values. Since the
parser determines evaluation order, we do not need to worry about breaking
dependences between attributes.

Most compilers build and use such a repository, called a symbol table. The
symbol table maps a name into a variety of annotations such as a type, the
size of its runtime representation, and the information needed to generate
a runtime address. The table may also store a number of type-dependent
fields, such as the type signature of a function or the number of dimen-
sions and their bounds for an array. Section 5.5 and Appendix B.4 delve
into symbol-table design more deeply.

Load Tracking, Revisited

Consider, again, the problem of tracking 10ad operations that arose as part of
estimating execution costs. Most of the complexity in the attribute grammar
for this problem arose from the need to pass information around the tree.
In an ad hoc syntax-directed translation scheme that uses a symbol table,
the problem is easy to handle. The compiler writer can set aside a field in
the table to hold a boolean that indicates whether or not that identifier has
already been charged for a 1oad. The field is initially set to false. The
critical code is associated with the production Factor — name. If the name’s
symbol table entry indicates that it has not been charged for a Toad, then
cost is updated and the field is set to true.
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Production Syntax-Directed Actions

Blockg — Block; Assign

| Assign
Assign — name = Expr; { cost = cost + Cost(store) }
Expr — Expr + Term {cost = cost + Cost(add) }
| Expr — Term {cost = cost + Cost(sub) }
| Term
Term — Term x Factor {cost = cost + Cost(mult)}
| Term = Factor {cost = cost + Cost(div)}
|  Factor

Factor — ( Expr )

| num { cost = cost + Cost(loadl) }

| name {if name’s symbol table field
indicates that it has not been loaded
then

cost = cost + Cost(load)
set the field to true}

M FIGURE 4.12 Tracking Loads with Ad Hoc Syntax-Directed Translation.

Figure 4.12 shows this case, along with all the other actions. Because the
actions can contain arbitrary code, the compiler can accumulate cost in a
single variable, rather than creating a cost attribute at each node in the parse
tree. This scheme requires fewer actions than the attribution rules for the
simplest execution model, even though it can provide the accuracy of the
more complex model.

Notice that several productions have no actions. The remaining actions are
simple, except for the action taken on a reduction by name. All of the com-
plication introduced by tracking loads falls into that single action; contrast
that with the attribute-grammar version, where the task of passing around
the Before and After sets came to dominate the specification. The ad hoc
version is cleaner and simpler, in part because the problem fits nicely into
the evaluation order dictated by the reduce actions in a shift-reduce parser.
Of course, the compiler writer must implement the symbol table or import it
from some library of data-structure implementations.

Clearly, some of these strategies could also be applied in an attribute-
grammar framework. However, they violate the functional nature of the
attribute grammar. They force critical parts of the work out of the attribute-
grammar framework and into an ad hoc setting.
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The scheme in Figure 4.12 ignores one critical issue: initializing cost. The
grammar, as written, contains no production that can appropriately initialize
cost to zero. The solution, as described earlier, is to modify the grammar in
a way that creates a place for the initialization. An initial production, such as
Start — CostInit Block, along with Costlnit — €, does this. The framework
can perform the assignment cost < 0 on the reduction from € to Costlnit.

Type Inference for Expressions, Revisited

The problem of inferring types for expressions fit well into the attribute-
grammar framework, as long as we assumed that leaf nodes already had
type information. The simplicity of the solution shown in Figure 4.7 derives
from two principal facts. First, because expression types are defined recur-
sively on the expression tree, the natural flow of information runs bottom up
from the leaves to the root. This biases the solution toward an S-attributed
grammar. Second, expression types are defined in terms of the syntax of the
source language. This fits well with the attribute-grammar framework, which
implicitly requires the presence of a parse tree. All the type information
can be tied to instances of grammar symbols, which correspond precisely
to nodes in the parse tree.

We can reformulate this problem in an ad hoc framework, as shown in
Figure 4.13. It uses the type inference functions introduced with Figure 4.7.
The resulting framework looks similar to the attribute grammar for the same
purpose from Figure 4.7. The ad hoc framework provides no real advantage
for this problem.

Production Syntax-Directed Actions
Expr — Expr — Term { $S <« Fi(s1,83) )}
| Expr — Term { S$ « F_(51,$3) }
| Term { $S « $1}
Term — Term x Factor  { $$ < F»($1,$3) }
| Term = Factor  { $$ <« F.(51,$3) }
| Factor { §$ <« $1}
Factor — ( Expr ) { S <« $2}
| num { $$ <« type of the num }
| name { S$ <« type of the name }

M FIGURE 4.13 Ad Hoc Framework for Inferring Expression Types.
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Production Syntax-Directed Actions

Expr — Expr + Term { SS <« MakeNodey (plus,S$1,S3);
$S.type < Fi(Sl.type, $3.type) }
| Expr — Term { SS <« MakeNodey(minus, $1,53);
$S.type <« F_(S1.type,$3.type) }
| Term { SS « $1}
Term — Term x Factor { SS < MakeNode(times, $1,53$3);
$S.type < Fy(S1.type, $3.type) }
| Term = Factor { $$S < MakeNode,(divide, $1,53);
$S.type < F-(Sl.type, S3.type) }

| Factor { S <« $1}
Factor — ( Expr ) { $§ <« $2})
| num { $$ < MakeNodeg (number);

$$.text <« scanned text;
$S.type < type of the number }

| name { $$ <« MakeNodeg(identifier);
$S.text <« scanned text;
$S.type < type of the identifier }

M FIGURE 4.14 Building an Abstract Syntax Tree and Inferring Expression Types.

Building an Abstract Syntax Tree

Compiler front ends must build an intermediate representation of the pro-
gram for use in the compiler’s middle part and its back end. Abstract syntax
trees are a common form of tree-structured IR. The task of building an AsT
fits neatly into an ad hoc syntax-directed translation scheme.

Assume that the compiler has a series of routines named MakeNode;, for
0 < i < 3. The routine takes, as its first argument, a constant that uniquely
identifies the grammar symbol that the new node will represent. The remain-
ing i arguments are the nodes that head each of the i subtrees. Thus,
MakeNodep (number) constructs a leaf node and marks it as representing  The MakeNode routines can implement the

a num. Similarly, tree in any appropriate way. For example, they
might map the structure onto a binary tree, as

discussed in Section B.3.1.
MakeNodey (PTus,MakeNodeg (number, ) MakeNodeg (number))

builds an AST rooted in a node for p7us with two children, each of which is
a leaf node for num.
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To build an abstract syntax tree, the ad hoc syntax-directed translation
scheme follows two general principles:

1. For an operator, it creates a node with a child for each operand. Thus,
2+ 3 creates a binary node for + with the nodes for 2 and 3 as children.

2. For a useless production, such as Term — Factor, it reuses the result
from the Factor action as its own result.

In this manner, it avoids building tree nodes that represent syntactic vari-
ables, such as Factor, Term, and Expr. Figure 4.14 shows a syntax-directed
translation scheme that incorporates these ideas.

Generating ILOC for Expressions

As a final example of manipulating expressions, consider an ad hoc
framework that generates 1LOC rather than an AsT. We will make several
simplifying assumptions. The example limits its attention to integers;
handling other types adds complexity, but little insight. The example also
assumes that all values can be held in registers—both that the values fit in
registers and that the 1Loc implementation provides more registers than the
computation will use.

Code generation requires the compiler to track many small details. To
abstract away most of these bookkeeping details (and to defer some deeper
issues to following chapters), the example framework uses four supporting
routines.

1. Address takes a variable name as its argument. It returns the number of
a register that contains the value specified by name. If necessary, it
generates code to load that value.

2. Emit handles the details of creating a concrete representation for the
various ILOC operations. It might format and print them to a file.
Alternatively, it might build an internal representation for later use.

3. NextRegister returns a new register number. A simple implementation
could increment a global counter.

4. Value takes a number as its argument and returns a register number. It
ensures that the register contains the number passed as its argument. If
necessary, it generates code to move that number into the register.

Figure 4.15 shows the syntax-directed framework for this problem. The
actions communicate by passing register names in the parsing stack. The
actions pass these names to £mit as needed, to create the operations that
implement the input expression.
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Production Syntax-Directed Actions

Expr — Expr + Term { SS < NextRegister;
Emit(add, $1,53,55)}

| Expr — Term {$S < NextRegister;
Emit(sub, $1,5$3,5S) }
| Term {SS <51}

Term — Term x Factor {$S < NextRegister;
Emit(mult, $1,53,5%)}
| Term + Factor ~ { $S <= NextRegister;
Emit(div, $1,5$3,8%)}

| Factor {S$ <« S1}
Factor — ( Expr) {$S <52}
| num { $$ < Value(scanned text); }
| name { $$ < Address(scanned text); }

M FIGURE 4.15 Emitting 1Loc for Expressions.

Processing Declarations

Of course, the compiler writer can use syntax-directed actions to fill in much
of the information that resides in the symbol table. For example, the gram-
mar fragment shown in Figure 4.16 describes a limited subset of the syntax
for declaring variables in c. (It omits typedefs, structs, unions, the type
qualifiers const, restrict, and volatile, as well as the details of the
initialization syntax. It also leaves several nonterminals unelaborated.) Con-
sider the actions required to build symbol-table entries for each declared
variable. Each Declaration begins with a set of one or more qualifiers that
specify the variable’s type and storage class. These qualifiers are followed
by a list of one or more variable names; each variable name can include
specifications about indirection (one or more occurrences of x), about array
dimensions, and about initial values for the variable.

For example, the StorageClass production allows the programmer to specify
information about the lifetime of a variable’s value; an auto variable has a
lifetime that matches the lifetime of the block that declares it, while static
variables have lifetimes that span the program’s entire execution. The reg-
ister specifier suggests to the compiler that the value should be kept in a
location that can be accessed quickly—historically, a hardware register. The
extern specifier tells the compiler that declarations of the same name in
different compilation units are to be linked as a single object.
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DeclarationList

Declaration
SpecifierList

Specifier

DeclarationList Declaration
Declaration

SpecifierList InitDeclaratorList ;
Specifier SpecifierList
Specifier

StorageClass

TypeSpecifier

auto

static

extern

register

void

char

short

int

long

signed

unsigned

float

double

InitDeclaratorList , InitDeclarator
InitDeclarator

Declarator = Initializer
Declarator

Pointer DirectDeclarator
DirectDeclarator

*

* Pointer

ident

( Declarator )

DirectDeclarator ( )
DirectDeclarator ( ParameterTypelList )
DirectDeclarator ( IdentifierList )
DirectDeclarator [ ]
DirectDeclarator [ ConstantExpr ]

StorageClass

TypeSpecifier

InitDeclaratorList
InitDeclarator
Declarator
Pointer

DirectDeclarator

e B e e e et AN A BN

M FIGURE 4.16 A Subset of ('s Declaration Syntax.

The compiler must ensure that each declared name has at most one storage
class attribute. The grammar places the specifiers before a list of one or more
names. The compiler can record the specifiers as it processes them and apply
them to the names when it later encounters them. The grammar admits an
arbitrary number of StorageClass and TypeSpecifier keywords; the standard
limits the ways that the actual keywords can be combined. For example,
it allows only one StorageClass per declaration. The compiler must enforce

While such restrictions can be encoded in the
grammar, the standard writers chose to leave it
for semantic elaboration to check, rather than
complicate an already large grammar.
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WHAT ABOUT CONTEXT-SENSITIVE GRAMMARS?

Given the progression of ideas from the previous chapters, it might seem
natural to consider the use of context-sensitive languages to perform
context-sensitive checks, such as type inference. After all, we used reg-
ular languages to perform lexical analysis and context-free languages to
perform syntax analysis. A natural progression might suggest the study of
context-sensitive languages and their grammars. Context-sensitive gram-
mars can express a larger family of languages than can context-free
grammars.

However, context-sensitive grammars are not the right answer for two dis-
tinct reasons. First, the problem of parsing a context-sensitive grammar
is P-Space complete. Thus, a compiler that used such a technique could
run very slowly. Second, many of the important questions are difficult,
if not impossible, to encode in a context-sensitive grammar. For exam-
ple, consider the issue of declaration before use. To write this rule into
a context-sensitive grammar would require the grammar to encode each
distinct combination of declared variables. With a sufficiently small name
space (for example, Dartmouth BASIC limited the programmer to single-
letter names, with an optional single digit), this might be manageable;in a
modern language with a large name space, the set of names is too large to
encode in a context-sensitive grammar.

this restriction through context-sensitive checking. Similar restrictions apply
to TypeSpecifiers. For example, short is legal with int but not with float.

To process declarations, the compiler must collect the attributes from the
qualifiers, add any indirection, dimension, or initialization attributes, and
enter the variable in the table. The compiler writer might set up a properties
structure whose fields correspond to the properties of a symbol-table entry.
At the end of a Declaration, it can initialize the values of each field in the
structure. As it reduces the various productions in the declaration syntax, it
can adjust the values in the structure accordingly.

m  On areduction of auto to StorageClass, it can check that the field for
storage class has not already been set, and then set it to auto. Similar
actions for static, extern, and register complete the handling of
those properties of a name.

m  The type specifier productions will set other fields in the structure. They
must include checks to insure that only valid combinations occur.

m  Reduction from ident to DirectDeclarator should trigger an action that
creates a new symbol-table entry for the name and copies the current
settings from the properties structure into that entry.
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m  Reducing by the production
InitDeclaratorList — InitDeclaratorList , InitDeclarator

can reset the properties fields that relate to the specific name, including
those set by the Pointer, Initializer, and DirectDeclarator productions.

By coordinating a series of actions across the productions in the declara-
tion syntax, the compiler writer can arrange to have the properties structure
contain the appropriate settings each time a name is processed.

When the parser finishes building the DeclarationList, it has built a symbol-
table entry for each variable declared in the current scope. At that point, it
may need to perform some housekeeping chores, such as assigning storage
locations to declared variables. This can be done in an action for the pro-
duction that reduces the DeclarationList. If necessary, that production can
be split to create a convenient point for the action.

SECTION REVIEW

The introduction of parser generators created the need for a

mechanism to tie context-sensitive actions to the parse-time

behavior of the compiler. Ad hoc syntax-directed translation, as
described in this section, evolved to fill that need. It uses some of the
same intuitions as the attribute-grammar approach. It allows only one
evaluation order. It has a limited name space for use in the code snippets
that form semantic actions.

Despite these limitations, the power of allowing arbitrary code in
semantic actions, coupled with support for this technique in widely used
parser generators, has led to widespread use of ad hoc syntax-directed
translation. It works well in conjunction with global data structures, such
as a symbol table, to perform nonlocal communication. It efficiently and
effectively solves a class of problems that arise in building a compiler’s

front end.
Calc — Expr
Expr — Expr+ Term [
| Expr— Term Review Questions
| Term 1. Consider the problem of adding ad hoc actions to an LL(1) parser gen-
Term —Term X num erator. How would you modify the LL(1) skeleton parser to include
: ;eLTn+ nurm user-defined actions for each production?

2. In review question 1 for Section 4.3, you built an attribute-grammar
framework to compute values in the “four function calculator” gram-
mar. Now, consider implementing a calculator widget for the desktop
on your personal computer. Contrast the utility of your attribute
grammar and your ad hoc syntax-directed translation scheme for the

Four function calculator

Hint: Recall that an attribute grammar does not

specify order of evaluation. . .
calculator implementation.
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4.5 ADVANCED TOPICS

This chapter has introduced the basic notions of type theory and used them
as one motivating example for both attribute-grammar frameworks and for
ad hoc syntax-directed translation. A deeper treatment of type theory and its
applications could easily fill an entire volume.

The first subsection lays out some language design issues that affect the
way that a compiler must perform type inference and type checking. The
second subsection looks at a problem that arises in practice: rearranging
a computation during the process of building the intermediate representation
for it.

4.5.1 Harder Problems in Type Inference

Strongly typed, statically checked languages can help the programmer pro-
duce valid programs by detecting large classes of erroneous programs. The
same features that expose errors can improve the compiler’s ability to gener-
ate efficient code for a program by eliminating runtime checks and exposing
where the compiler can specialize special case code for some construct to
eliminate cases that cannot occur at runtime. These facts account, in part,
for the growing role of type systems in modern programming languages.

Our examples, however, have made assumptions that do not hold in all
programming languages. For example, we assumed that variables and pro-
cedures are declared—the programmer writes down a concise and binding
specification for each name. Varying these assumptions can radically change
the nature of both the type-checking problem and the strategies that the
compiler can use to implement the language.

Some programming languages either omit declarations or treat them as
optional information. Scheme programs lack declarations for variables.
Smalltalk programs declare classes, but an object’s class is determined only
when the program instantiates that object. Languages that support separate
compilation—compiling procedures independently and combining them at
link time to form a program—may not require declarations for independently
compiled procedures.

In the absence of declarations, type checking is harder because the compiler
must rely on contextual clues to determine the appropriate type for each
name. For example, if i is used as an index for some array a, that might con-
strain i to have a numeric type. The language might allow only integer
subscripts; alternatively, it might allow any type that can be converted to
an integer.

Typing rules are specified by the language definition. The specific details
of those rules determine how difficult it is to infer a type for each variable.
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This, in turn, has a direct effect on the strategies that a compiler can use to
implement the language.

Type-Consistent Uses and Constant Function Types

Consider a declaration-free language that requires consistent use of variables
and functions. In this case, the compiler can assign each name a general type
and narrow that type by examining each use of the name in context. For
example, a statement such as a <— bx3.14159 provides evidence that a and
b are numbers and that a must have a type that allows it to hold a decimal
number. If b also appears in contexts where an integer is expected, such as an
array reference c(b), then the compiler must choose between a noninteger
number (for bx3.14159) and an integer (for c(b)). With either choice, it
will need a conversion for one of the uses.

If functions have return types that are both known and constant—that is,
a function fee always returns the same type—then the compiler can solve
the type inference problem with an iterative fixed-point algorithm operating
over a lattice of types.

Type-Consistent Uses and Unknown Function Types

If the type of a function varies with the function’s arguments, then the
problem of type inference becomes more complex. This situation arises in

Map can also handle functions with multiple Scheme, for example. Scheme’s library procedure map takes as arguments a
arguments. To do so, it takes multiple argument function and a list. It returns the result of applying the function argument to
lists and treats them as lists of arguments, in each element of the list. That is, if the argument function takes type « to 8,
order. then map takes a list of « to a list of 8. We would write its type signature as

map: (¢—B) x list of a — list of B

Since map’s return type depends on the types of its arguments, a property
known as parametric polymorphism, the inference rules must include equa-
tions over the space of types. (With known, constant return types, functions
return values in the space of types.) With this addition, a simple iterative
fixed-point approach to type inference is not sufficient.

The classic approach to checking these more complex systems relies on uni-
fication, although clever type-system design and type representations can
permit the use of simpler or more efficient techniques.

Dynamic Changes in Type

If a variable’s type can change during execution, other strategies may be
required to discover where type changes occur and to infer appropriate types.
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In principle, a compiler can rename the variables so that each definition site
corresponds to a unique name. It can then infer types for those names based
on the context provided by the operation that defines each name.

To infer types successfully, such a system would need to handle points
in the code where distinct definitions must merge due to the convergence
of different control-flow paths, as with ¢-functions in static single assign-
ment form (see Sections 5.4.2 and 9.3). If the language includes parametric
polymorphism, the type-inference mechanism must handle it, as well.

The classic approach to implementing a language with dynamically chang-
ing types is to fall back on interpretation. Lisp, Scheme, Smalltalk, and ApL
all have similar problems. The standard implementation practice for these
languages involves interpreting the operators, tagging the data with their
types, and checking for type errors at runtime.

In ApL, the programmer can easily write a program where a x b multiplies
integers the first time it executes and multiplies multidimensional arrays of
floating-point numbers the next time. This led to a body of research on check
elimination and check motion. The best APL systems avoided most of the
checks that a naive interpreter would need.

4.5.2 Changing Associativity

As we saw in Section 3.5.4, associativity can make a difference in numerical
computation. Similarly, it can change the way that data structures are built.
We can use syntax-directed actions to build representations that reflect a
different associativity than the grammar would naturally produce.

In general, left-recursive grammars naturally produce left associativity,
while right-recursive grammars naturally produce right associativity. To
see this, consider the left-recursive and right-recursive list grammars, aug-
mented with syntax-directed actions to build lists, shown at the top of
Figure 4.17. The actions associated with each production build a list rep-
resentation. Assume that [ (x, y) is a list constructor; it can be implemented
as MakeNodey (cons, x,y). The lower part of the figure shows the result of
applying the two translation schemes to an input consisting of five e1ts.

The two trees are, in many ways, equivalent. An in-order traversal
of both trees visits the leaf nodes in the same order. If we add
parentheses to reflect the tree structure, the left-recursive tree is
((((elty,elty).,elty),elty),elts) while the right-recursive tree
is (elty,(elty,(elty,(elty,elts)))). The ordering produced by left
recursion corresponds to the classic left-to-right ordering for algebraic
operators. The ordering produced by right recursion corresponds to the
notion of a list found in Lisp and Scheme.
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Production Actions Production Actions
List — List elt {SS <« L($1,$2)} List — elt List {SS <« L($1,$2)}
| elt {$§ <« sI} | elt {$S <« sI)
eltg elt]
elty elt,
e.I‘t?a e1t3
e]tl e]tz e-|t4 e]t5
Left Recursion Right Recursion

M FIGURE 4.17 Recursion versus Associativity.

Sometimes, it is convenient to use different directions for recursion and asso-
ciativity. To build the right-recursive tree from the left-recursive grammar,
we could use a constructor that adds successive elements to the end of the
list. A straightforward implementation of this idea would have to walk the
list on each reduction, making the constructor itself take O(nz) time, where
n is the length of the list. To avoid this overhead, the compiler can create a
list header node that contains pointers to both the first and last nodes in the
list. This introduces an extra node to the list. If the system constructs many
short lists, the overhead may be a problem.

A solution that we find particularly appealing is to use a list header node
during construction and discard it after the list has been built. Rewriting the
grammar to use an e-production makes this particularly clean.

Grammar Actions
List — € { SS < MakelistHeader ()}
| Listelt { SS <« AddToEnd($1,52) }
Quux — List { $S <« RemovelistHeader($1) }

A reduction with the e-production creates the temporary list header node;
with a shift-reduce parser, this reduction occurs first. The List — List elt
production invokes a constructor that relies on the presence of the tempo-
rary header node. When List is reduced on the right-hand side of any other
production, the corresponding action invokes a function that discards the
temporary header and returns the first element of the list.

This approach lets the parser reverse the associativity at the cost of a small
constant overhead in both space and time. It requires one more reduction per
list, for the e-production. The revised grammar admits an empty list, while
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the original grammar did not. To remedy this problem, RemovelistHeader
can explicitly check for the empty case and report the error.

4.6 SUMMARY AND PERSPECTIVE

In Chapters 2 and 3, we saw that much of the work in a compiler’s front
end can be automated. Regular expressions work well for lexical analy-
sis. Context-free grammars work well for syntax analysis. In this chapter,
we examined two ways to perform context-sensitive analysis: attribute-
grammar formalism and an ad hoc approach. For context-sensitive analy-
sis, unlike scanning and parsing, formalism has not displaced the ad hoc
approach.

The formal approach, using attribute grammars, offers the hope of writ-
ing high-level specifications that produce reasonably efficient executables.
While attribute grammars are not the solution to every problem in context-
sensitive analysis, they have found application in several domains, ranging
from theorem provers to program analysis. For problems in which the
attribute flow is mostly local, attribute grammars work well. Problems that
can be formulated entirely in terms of one kind of attribute, either inherited
or synthesized, often produce clean, intuitive solutions when cast as attribute
grammars. When the problem of directing the flow of attributes around the
tree with copy rules comes to dominate the grammar, it is probably time to
step outside the functional paradigm of attribute grammars and introduce a
central repository for facts.

The ad hoc technique, syntax-directed translation, integrates arbitrary snip-
pets of code into the parser and lets the parser sequence the actions and pass
values between them. This approach has been widely embraced because of
its flexibility and its inclusion in most parser-generator systems. The ad hoc
approach sidesteps the practical problems that arise from nonlocal attribute
flow and from the need to manage attribute storage. Values flow in one direc-
tion alongside the parser’s internal representation of its state (synthesized
values for bottom-up parsers and inherited for top-down parsers). These
schemes use global data structures to pass information in the other direction
and to handle nonlocal attribute flow.

In practice, the compiler writer often tries to solve several problems at
once, such as building an intermediate representation, inferring types, and
assigning storage locations. This tends to create significant attribute flows
in both directions, pushing the implementor toward an ad hoc solution
that uses some central repository for facts, such as a symbol table. The
justification for solving many problems in one pass is usually compile-
time efficiency. However, solving the problems in separate passes can
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often produce solutions that are easier to understand, to implement, and to
maintain.

This chapter introduced the ideas behind type systems as an example of the
kind of context-sensitive analysis that a compiler must perform. The study
of type theory and type-system design is a significant scholarly activity with
a deep literature of its own. This chapter scratched the surface of type infer-
ence and type checking, but a deeper treatment of these issues is beyond the
scope of this text. In practice, the compiler writer needs to study the type sys-
tem of the source language thoroughly and to engineer the implementation
of type inference and type checking carefully. The pointers in this chapter
are a start, but a realistic implementation requires more study.

B CHAPTER NOTES

Type systems have been an integral part of programming languages since
the original FORTRAN compiler. While the first type systems reflected the
resources of the underlying machine, deeper levels of abstraction soon
appeared in type systems for languages such as Algol 68 and Simula 67.
The theory of type systems has been actively studied for decades, produc-
ing a string of languages that embodied important principles. These include
Russell [45] (parametric polymorphism), cLU [248] (abstract data types),
Smalltalk [162] (subtyping through inheritance), and ML [265] (thorough
and complete treatment of types as first-class objects). Cardelli has written
an excellent overview of type systems [69]. The APL community produced
a series of classic papers that dealt with techniques to eliminate runtime
checks [1, 35, 264, 349].

Attribute grammars, like many ideas in computer science, were first pro-
posed by Knuth [229, 230]. The literature on attribute grammars has focused
on evaluators [203, 342], on circularity testing [342], and on applications
of attribute grammars [157, 298]. Attribute grammars have served as the
basis for several successful systems, including Intel’s Pascal compiler for the
80286 [142, 143], the Cornell Program Synthesizer [297] and the Synthesizer
Generator [198, 299].

Ad hoc syntax-directed translation has always been a part of the development
of real parsers. Irons described the basic ideas behind syntax-directed trans-
lation to separate a parser’s actions from the description of its syntax [202].
Undoubtedly, the same basic ideas were used in hand-coded precedence
parsers. The style of writing syntax-directed actions that we describe was
introduced by Johnson in Yacc [205]. The same notation has been carried
forward into more recent systems, including bison from the Gnu project.
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B EXERCISES

1. In Scheme, the + operator is overloaded. Given that Scheme is Section 4.2
dynamically typed, describe a method to type check an operation of
the form (+ ab) where a and b may be of any type that is valid for
the + operator.

2. Some languages, such as APL or PHP, neither require variable
declarations nor enforce consistency between assignments to the same
variable. (A program can assign the integer 10 to X and later assign the
string value “book” to X in the same scope.) This style of
programming is sometimes called type juggling.

Suppose that you have an existing implementation of a language
that has no declarations but requires type-consistent uses. How could
you modify it to allow type juggling?

3. Based on the following evaluation rules, draw an annotated parse tree Section 4.3
that shows how the syntax tree for a - (b+c) is constructed.

Production Evaluation Rules

Ey — E1+T { Eo.nptr <« mknode(+, Ey.nptr,T.nptr) }

Eo — E1—T { Eg.nptr < mknode(-, Ey.nptr, T.nptr) }
Eo —> T { Eo.nptr <« T.nptr }

T — (E) { T.nptr < E.nptr }

T — id { T.nptr < mkleaf(id,id.entry) }

4. Use the attribute-grammar paradigm to write an interpreter for the
classic expression grammar. Assume that each name has a value
attribute and a 1exeme attribute. Assume that all attributes are already
defined and that all values will always have the same type.

5. Write a grammar to describe all binary numbers that are multiples of
four. Add attribution rules to the grammar that will annotate the start
symbol of a syntax tree with an attribute value that contains the
decimal value of the binary number.

6. Using the grammar defined in the previous exercise, build the syntax
tree for the binary number 11100.
a. Show all the attributes in the tree with their corresponding values.
b. Draw the attribute dependence graph for the syntax tree and
classify all attributes as being either synthesized or inherited.
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Section 4.4

7.

A Pascal program can declare two integer variables a and b with the
syntax

var a, b: int

This declaration might be described with the following grammar:

VarDecl — var IDList : TypelD
IDList  — IDList, ID
| ID

where IDList derives a comma-separated list of variable names and

TypelD derives a valid Pascal type. You may find it necessary to

rewrite the grammar.

a. Write an attribute grammar that assigns the correct data type to
each declared variable.

b. Write an ad hoc syntax-directed translation scheme that assigns the
correct data type to each declared variable.

c. Can either scheme operate in a single pass over the syntax tree?

Sometimes, the compiler writer can move an issue across the
boundary between context-free and context-sensitive analysis.
Consider, for example, the classic ambiguity that arises between
function invocation and array references in FORTRAN 77 (and other
languages). These constructs might be added to the classic expression
grammar using the productions:

Factor — name ( ExprList )
ExprList — ExprList , Expr
|  Expr
Here, the only difference between a function invocation and an array
reference lies in how the name is declared.

In previous chapters, we have discussed using cooperation between
the scanner and the parser to disambiguate these constructs. Can the
problem be solved during context-sensitive analysis? Which solution
is preferable?

Sometimes, a language specification uses context-sensitive
mechanisms to check properties that can be tested in a context-free
way. Consider the grammar fragment in Figure 4.16 on page 208. It
allows an arbitrary number of StorageClass specifiers when, in fact,
the standard restricts a declaration to a single StorageClass specifier.
a. Rewrite the grammar to enforce the restriction grammatically.
b. Similarly, the language allows only a limited set of combinations of
TypeSpecifier. 1ong is allowed with either int or float; short is
allowed only with int. Either signed or unsigned can appear
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with any form of int. signed may also appear on char. Can these
restrictions be written into the grammar? Hint: The scanner returned a single token type for
¢. Propose an explanation for why the authors structured the grammar 3y of the StorageClass values and another token
as they did. type for any of the TypeSpecifiers.
d. Do your revisions to the grammar change the overall speed of the
parser? In building a parser for ¢, would you use the grammar like
the one in Figure 4.16, or would you prefer your revised grammar?

Justify your answer.

10. Object-oriented languages allow operator and function overloading. In Section 4.5
these languages, the function name is not always a unique identifier,
since you can have multiple related definitions, as in

void Show(int);

void Show(char x);

void Show(float);
For lookup purposes, the compiler must construct a distinct identifier
for each function. Sometimes, such overloaded functions will have
different return types, as well. How would you create distinct
identifiers for such functions?

11. Inheritance can create problems for the implementation of
object-oriented languages. When object type A is a parent of object
type B, a program can assign a “pointer to B” to a “pointer to A,” with
syntax such as a <« b. This should not cause problems since
everything that A can do, B can also do. However, one cannot assign a
“pointer to A” to a “pointer to B,” since object class B can implement
methods that object class A does not.

Design a mechanism that can use ad hoc syntax-directed translation to
determine whether or not a pointer assignment of this kind is allowed.
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Chapter

Intermediate Representations

B CHAPTER OVERVIEW

The central data structure in a compiler is the intermediate form of the
program being compiled. Most passes in the compiler read and manipulate
the IR form of the code. Thus, decisions about what to represent and how
to represent it play a crucial role in both the cost of compilation and its
effectiveness. This chapter presents a survey of IR forms that compilers use,
including graphical IR, linear IRs, and symbol tables.

Keywords: Intermediate Representation, Graphical 1R, Linear IR, SsA Form,
Symbol Table

5.1 INTRODUCTION

Compilers are typically organized as a series of passes. As the compiler
derives knowledge about the code it compiles, it must convey that infor-
mation from one pass to another. Thus, the compiler needs a representation
for all of the facts that it derives about the program. We call this representa-
tion an intermediate representation, or IR. A compiler may have a single IR,
or it may have a series of Irs that it uses as it transforms the code from source
language into its target language. During translation, the 1R form of the input
program is the definitive form of the program. The compiler does not refer
back to the source text; instead, it looks to the IR form of the code. The prop-
erties of a compiler’s IR or IRs have a direct effect on what the compiler can
do to the code.

Almost every phase of the compiler manipulates the program in its IR form.
Thus, the properties of the IR, such as the mechanisms for reading and writ-
ing specific fields, for finding specific facts or annotations, and for navigating
around a program in IR form, have a direct impact on the ease of writing the
individual passes and on the cost of executing those passes.

Engineering a Compiler. DOI: 10.1016/B978-0-12-088478-0.00005-0
Copyright © 2012, Elsevier Inc. All rights reserved. 221



222 CHAPTER 5 Intermediate Representations

Conceptual Roadmap

This chapter focuses on the issues that surround the design and use of an
IR in compilation. Section 5.1.1 provides a taxonomic overview of IrRs and
their properties. Many compiler writers consider trees and graphs as the nat-
ural representation for programs; for example, parse trees easily capture the
derivations built by a parser. Section 5.2 describes several 1rs based on trees
and graphs. Of course, most processors that compilers target have linear
assembly languages as their native language. Accordingly, some compilers
use linear IRs with the rationale that those IRs expose properties of the target
machine’s code that the compiler should explicitly see. Section 5.3 examines
linear IRs.

The final sections of this chapter deal with issues that relate to IRs but are not,
strictly speaking, IR design issues. Section 5.4 explores issues that relate to
naming: the choice of specific names for specific values. Naming can have a
strong impact on the kind of code generated by a compiler. That discussion
includes a detailed look at a specific, widely used Ir called static single-

Appendix B.4 provides more material onsymbol  gssignment form, or ssa. Section 5.5 provides a high-level overview of how

table implementation. the compiler builds, uses, and maintains symbol tables. Most compilers build
one or more symbol tables to hold information about names and values and
to provide efficient access to that information.

Overview

To convey information between its passes, a compiler needs a representation
for all of the knowledge that it derives about the program being compiled.
Thus, almost all compilers use some form of intermediate representation to
model the code being analyzed, translated, and optimized. Most passes in
the compiler consume 1R; the scanner is an exception. Most passes in the
compiler produce IR; passes in the code generator can be exceptions. Many
modern compilers use multiple 1rs during the course of a single compilation.
In a pass-structured compiler, the IR serves as the primary and definitive
representation of the code.

A compiler’s IR must be expressive enough to record all of the useful facts
that the compiler might need to transmit between passes. Source code is
insufficient for this purpose; the compiler derives many facts that have no
representation in source code, such as the addresses of variables and con-
stants or the register in which a given parameter is passed. To record all of
the detail that the compiler must encode, most compiler writers augment the
IR with tables and sets that record additional information. We consider these
tables part of the IRr.
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Selecting an appropriate IR for a compiler project requires an understanding
of the source language, the target machine, and the properties of the appli-
cations that the compiler will translate. For example, a source-to-source
translator might use an IR that closely resembles the source code, while a
compiler that produces assembly code for a microcontroller might obtain
better results with an assembly-code-like IR. Similarly, a compiler for c
might need annotations about pointer values that are irrelevant in a com-
piler for Perl, and a Java compiler keeps records about the class hierarchy
that have no counterpart in a ¢ compiler.

Implementing an IR forces the compiler writer to focus on practical issues.

The compiler needs inexpensive ways to perform the operations that it does

frequently. It needs concise ways to express the full range of constructs that

might arise during compilation. The compiler writer also needs mechanisms  The = symboliniLoc serves no purpose except
that let humans examine the IR program easily and directly. Self-interest {0 improve readabilty.

should ensure that compiler writers pay heed to this last point. Finally, com-

pilers that use an IR almost always make multiple passes over the IR for a

program. The ability to gather information in one pass and use it in another

improves the quality of code that a compiler can generate.

5.1.1 A Taxonomy of Intermediate Representations

Compilers have used many kinds of 1r. We will organize our discussion of
IRs along three axes: structural organization, level of abstraction, and naming
discipline. In general, these three attributes are independent; most combi-
nations of organization, abstraction, and naming have been used in some
compiler.

Broadly speaking, IRrs fall into three structural categories:

m  Graphical Irs encode the compiler’s knowledge in a graph. The
algorithms are expressed in terms of graphical objects: nodes, edges,
lists, or trees. The parse trees used to depict derivations in Chapter 3
are a graphical IR.

m  Linear ks resemble pseudo-code for some abstract machine. The
algorithms iterate over simple, linear sequences of operations. The 1LOC
code used in this book is a form of linear IRr.

m Hybrid irs combine elements of both graphical and linear IRrs, in an
attempt to capture their strengths and avoid their weaknesses. A
common hybrid representation uses a low-level linear IR to represent
blocks of straight-line code and a graph to represent the flow of control
among those blocks.
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The structural organization of an IR has a strong impact on how the compiler
writer thinks about analysis, optimization, and code generation. For exam-
ple, treelike IRs lead naturally to passes structured as some form of treewalk.
Similarly, linear 1rs lead naturally to passes that iterate over the operations
in order.

The second axis of our IR taxonomy is the level of abstraction at which the
IR represents operations. The IR can range from a near-source representation
in which a single node might represent an array access or a procedure call to
a low-level representation in which several IR operations must be combined
to form a single target-machine operation.

To illustrate the possibilities, assume that AL1...10, 1...10] is an array of
four-byte elements stored in row-major order and consider how the compiler
might represent the array reference A[ 1, j] in a source-level tree and in 1LOC.

subl riy,1 = r

multl rq,10 = ro
subl rj,1 = r3
add ro,r3 = rq
multl rq,4 = rsg
loadl @A = rg
=

OOO I
load ry = PAij

Source-Level Tree ILOC Code

In the source-level tree, the compiler can easily recognize the computation as
an array reference; the 1Loc code obscures that fact fairly well. In a compiler
that tries to determine when two different references can touch the same
memory location, the source-level tree makes it easy to find and compare
references. By contrast, the 1LOC code makes those tasks hard. Optimization
only makes the situation worse; in the ILOC code, optimization might move
parts of the address computation elsewhere. The tree node will remain intact
under optimization.

On the other hand, if the goal is to optimize the target-machine code gen-
erated for the array access, the 1LOC code lets the compiler optimize details
that remain implicit in the source-level tree. For this purpose, a low-level 1R
may prove better.

Not all tree-based IRs use a near-source-level of abstraction. To be sure, parse
trees are implicitly related to the source code, but trees with other levels
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of abstraction have been used in many compilers. Many ¢ compilers, for
example, have used low-level expression trees. Similarly, linear 1rs can have
relatively high-level constructs, such as a max or a min operator, or a string-
copy operation.

The third axis of our IR taxonomy deals with the name space used to repre- ¢, « p

sent values in the code. In translating source code to a lower-level form, the t; < 2 X t;

compiler must choose names for a variety of distinct values. For example, to :E3 < i .
4 <= 3 =~ 1p

evaluate a - 2xb in a low-level IR, the compiler might generate a sequence
of operations such as those shown in the margin. Here, the compiler has
used four names, t; through t;. An equally valid scheme would replace
the occurrences of t, and ts with t;, which cuts the number of names
in half.

The choice of a naming scheme has a strong effect on how optimization can
improve the code. If the subexpression 2 - b has a unique name, the compiler
might find other evaluations of 2 - b that it can replace with a reference to
the value produced here. If the name is reused, the current value may not be
available at the subsequent, redundant evaluation. The choice of a naming
scheme also has an impact on compile time, because it determines the sizes
of many compile-time data structures.

As a practical matter, the costs of generating and manipulating an 1R should
concern the compiler writer, since they directly affect a compiler’s speed.
The data-space requirements of different IRs vary over a wide range. Since
the compiler typically touches all of the space that it allocates, data space
usually has a direct relationship to running time. To make this discussion
concrete, consider the 1Rs used in two different research systems that we
built at Rice University.

m The R”" Programming Environment built an abstract syntax tree for
FORTRAN. Nodes in the tree occupied 92 bytes each. The parser built an
average of eleven nodes per FORTRAN source line, for a size of just over
1,000 bytes per source-code line.

m  The mMsce research compiler used a full-scale implementation of 1LOC.
(The 1LOC in this book is a simple subset.) ILOC operations occupy 23 to
25 bytes. The compiler generates an average of roughly fifteen 1LoC
operations per source-code line, or about 375 bytes per source-code
line. Optimization reduces the size to just over three operations per
source-code line, or fewer than 100 bytes per source-code line.

Finally, the compiler writer should consider the expressiveness of the IR—its
ability to accommodate all the facts that the compiler needs to record. The
IR for a procedure might include the code that defines it, the results of static
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analysis, profile data from previous executions, and maps to let the debugger
understand the code and its data. All of these facts should be expressed in a
way that makes clear their relationship to specific points in the IRr.

5.2 GRAPHICAL IRS

Many compilers use IRs that represent the underlying code as a graph. While
all the graphical 1rs consist of nodes and edges, they differ in their level of
abstraction, in the relationship between the graph and the underlying code,
and in the structure of the graph.

5.2.1 Syntax-Related Trees

The parse trees shown in Chapter 3 are graphs that represent the source-
code form of the program. Parse trees are one specific form of treelike Irs.
In most treelike 1rs, the structure of the tree corresponds to the syntax of the
source code.

Parse Trees

As we saw in Section 3.2.2, the parse tree is a graphical representa-
tion for the derivation, or parse, that corresponds to the input program.
Figure 5.1 shows the classic expression grammar alongside a parse tree for
ax2+ax2xb. The parse tree is large relative to the source text because it
represents the complete derivation, with a node for each grammar symbol in
the derivation. Since the compiler must allocate memory for each node and
each edge, and it must traverse all those nodes and edges during compilation,
it is worth considering ways to shrink this parse tree.

Goal — Expr G‘fal
Expr — Expr+ Term Expr
| Expr- Term 4/1\>
| Term Expr + Term
Term — Term X Factor l
) Term Term x  Factor
|  Term + Factor
| Factor Term x Factor Term x Factor <name,b>
Factor — ( Expr) l 1 l 1
| num Factor <num,2> Factor <num,2>
| name 1 l
<{name,a> <{name,a>
(a) Classic Expression Grammar (b) Parse Tree for ax2+ax2xb

M FIGURE 5.1 Parse Tree for a X 2 +a X 2 x b Using the Classic Expression Grammar.
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Minor transformations on the grammar, as described in Section 3.6.1,
can eliminate some of the steps in the derivation and their corresponding
syntax-tree nodes. A more effective technique is to abstract away those
nodes that serve no real purpose in the rest of the compiler. This approach
leads to a simplified version of the parse tree, called an abstract syntax tree.

Parse trees are used primarily in discussions of parsing, and in attribute-
grammar systems, where they are the primary 1R. In most other applications
in which a source-level tree is needed, compiler writers tend to use one of
the more concise alternatives, described in the remainder of this subsection.

Abstract Syntax Trees

The abstract syntax tree (AST) retains the essential structure of the parse tree  Abstract syntax tree

but eliminates the extraneous nodes. The precedence and meaning of the  AnAsTisacontraction of the parse tree that omits
expression remain, but extraneous nodes have disappeared. Here is the ast ~ Mostnodes for nonterminal symbols.
forax2+ ax2xb:

X/+\><
SN N
N

The AST is a near-source-level representation. Because of its rough cor-
respondence to a parse tree, the parser can built an AST directly (see
Section 4.4.2).

ASTs have been used in many practical compiler systems. Source-to-source
systems, including syntax-directed editors and automatic parallelization
tools, often use an AST from which source code can easily be regener-
ated. The S-expressions found in Lisp and Scheme implementations are,
essentially, ASTS.

Even when the AST is used as a near-source-level representation, represen- bair
tation choices affect usability. For example, the AST in the R” Programming

Environment used the subtree shown in the margin to represent a complex
constant in FORTRAN, written (ci,c2). This choice worked well for the
syntax-directed editor, in which the programmer was able to change c1 and

c, independently; the pair node corresponded to the parentheses and the
Comma. """"

This pair format, however, proved problematic for the compiler. Each v
part of the compiler that dealt with constants needed special-case code (c1.c2)
for complex constants. All other constants were represented with a single AST for Compiling

€1 2
AST Designed for Editing
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STORAGE EFFICIENCY AND GRAPHICAL REPRESENTATIONS

Many practical systems have used abstract syntax trees to represent the
source text being translated. A common problem encountered in these
systems is the size of the AST relative to the input text. Large data structures
can limit the size of programs that the tools can handle.

The AST nodes in the R Programming Environment were large enough
that they posed a problem for the limited memory systems of 1980s
workstations. The cost of disk 1/0 for the trees slowed down all the R
tools.

No single problem leads to this explosion in AST size. R" had only one kind
of node, so that structure included all the fields needed by any node. This
simplified allocation but increased the node size. (Roughly half the nodes
were leaves, which need no pointers to children.) In other systems, the
nodes grow through the addition of myriad minor fields used by one pass
or another in the compiler. Sometimes, the node size increases over time,
as new features and passes are added.

Careful attention to the form and content of the AST can shrink its size.
In R, we built programs to analyze the contents of the AST and how the
AST was used. We combined some fields and eliminated others. (In some
cases, it was less expensive to recompute information than to write it and
read it.) In a few cases, we used hash linking to record unusual facts—using
one bit in the field that stores each node’s type to indicate the presence
of additional information stored in a hash table. (This scheme reduced the
space devoted to fields that were rarely used.) To record the AST on disk,
we converted it to a linear representation with a preorder treewalk; this
eliminated the need to record any internal pointers.

In R", these changes reduced the size of ASTs in memory by roughly 75
percent. On disk, after the pointers were removed, the files were about
half the size of their memory representation. These changes let R handle
larger programs and made the tools more responsive.

node that contained a pointer to the constant’s actual text. Using a simi-
lar format for complex constants would have complicated some operations,
such as editing the complex constants and loading them into registers. It
would have simplified others, such as comparing two constants. Taken over
the entire system, the simplifications would likely have outweighed the
complications.

Abstract syntax trees have found widespread use. Many compilers and inter-
preters use them; the level of abstraction that those systems need varies
widely. If the compiler generates source code as its output, the AST typi-
cally has source-level abstractions. If the compiler generates assembly code,
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the final version of the AST is usually at or below the abstraction level of the
machine’s instruction set.

Directed Acyclic Graphs . )
. . . . . Directed acyclic graph
While the AST is more concise than a syntax tree, it faithfully retains the 5 pacis an aswith sharing. Identical subtrees are

structure of the original source code. For example, the AsT forax2+ax2xb instantiated once, with multiple parents.
contains two distinct copies of the expression a x 2. A directed acyclic graph

(DAG) is a contraction of the AST that avoids this duplication. In a DAG, nodes

can have multiple parents, and identical subtrees are reused. Such sharing

makes the DAG more compact than the corresponding AST.

For expressions without assignment, textually identical expressions must
produce identical values. The DAG for ax2+a X2 xb, shown to the left,

reflects this fact by sharing a single copy of ax?2. The DAG encodes an +

explicit hint for evaluating the expression. If the value of a cannot change \
between the two uses of a, then the compiler should generate code to /X\
evaluate a x 2 once and use the result twice. This strategy can reduce the X b

cost of evaluation. However, the compiler must prove that a’s value can- / \
not change. If the expression contains neither assignment nor calls to other @ 2
procedures, the proof is easy. Since an assignment or a procedure call can

change the value associated with a name, the DAG construction algorithm

must invalidate subtrees as the values of their operands change.

DAGs are used in real systems for two reasons. If memory constraints limit
the size of programs that the compiler can handle, using a DAG can help by
reducing the memory footprint. Other systems use DAGS to expose redun-
dancies. Here, the benefit lies in better compiled code. These latter systems
tend to use the DAG as a derivative IR—building the DAG, transforming the
definitive IR to reflect the redundancies, and discarding the DAG.

Level of Abstraction

All of our example trees so far have shown near-source Irs. Compilers
also use low-level trees. Tree-based techniques for optimization and code
generation, in fact, may require such detail. As an example, consider the
statement w <— a - 2 X b. A source-level AST creates a concise form, as shown
in Figure 5.2a. However, the source-level tree lacks much of the detail
needed to translate the statement into assembly code. A low-level tree,
shown in Figure 5.2b, can make that detail explicit. This tree introduces four
new node types. A val node represents a value already in a register. A num
node represents a known constant. A 1ab node represents an assembly-level
label, typically a relocatable symbol. Finally, 4 is an operator that derefer-
ences a value; it treats the value as a memory address and returns the contents
of the memory at that address.
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X
W ) Tarp 4 1
a/ \>< ¢ num .
N b2
2 b + +
SN N
val num lab num
larp -16 @G 12
(a) Source-Level AST (b) Low-Level AST

M FIGURE 5.2 Abstract Syntax Trees with Different Levels of Abstraction.

Data area The low-level tree reveals the address calculations for the three variables.

The compiler groups together storage forvalues y, s stored at offset 4 from the pointer in r rp, which holds the pointer to the
that have the same lifetime and visibility. We call

data area for the current procedure. The double dereference of a shows that
these blocks of storage data areas.

it is a call-by-reference formal parameter accessed through a pointer stored
16 bytes before rarp. Finally, b is stored at offset 12 after the label @G.

The level of abstraction matters because the compiler can, in general, only
optimize details that are exposed in the IR. Properties that are implicit
in the 1R are hard to change, in part because the compiler would need
to translate implicit facts in different, instance-specific ways. For example,
to customize the code generated for an array reference, the compiler must
rewrite the related IR expressions. In a real program, different array refer-
ences are optimized in different ways, each according to the surrounding
context. For the compiler to tailor those references, it must be able to write
down the improvements in the IR.

As a final point, notice that the representations for the variable references
in the low-level tree reflect the different interpretations that occur on the
right and left side of the assignment. On the left-hand side, w evaluates to an
address, while both a and b evaluate to values because of the 4 operator.

5.2.2 Graphs

While trees provide a natural representation for the grammatical structure of
the source code discovered by parsing, their rigid structure makes them less
useful for representing other properties of programs. To model these aspects
of program behavior, compilers often use more general graphs as Irs. The
DAG introduced in the previous section is one example of a graph.
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Control-Flow Graph

The simplest unit of control flow in a program is a basic block—a maximal  Basic block

length sequence of straightline, or branch-free, code. A basic block is a  amaximal-length sequence of branch-free code
sequence of operations that always execute together, unless an operation |t begins with a labelled operation and ends with
raises an exception. Control always enters a basic block at its first operation  abranch, jump, or predicated operation.

and exits at its last operation.

A control-flow graph (cFG) models the flow of control between the basic  Control-flow graph

blocks in a program. A CFG is a directed graph, G = (N, E). Each node A6 hasanode forevery basic block and an edge

n € N corresponds to a basic block. Each edge ¢ = (n;,n;) € E corresponds foreach possible control transfer between blocks.

to a possible transfer of control from block 7; to block #; . We use the acronym cr6 for both context-free
grammar (see page 86) and control-flow graph.

To simplify the discussion of program analysis in Chapters 8 and 9, we 7, meaning should be clear from context.

assume that each CFG has a unique entry node, ng, and a unique exit node,
ny. In the CFG for a procedure, ng corresponds to the procedure’s entry point.
If a procedure has multiple entries, the compiler can insert a unique ng and
add edges from ng to each actual entry point. Similarly, n; corresponds to
the procedure’s exit. Multiple exits are more common than multiple entries,
but the compiler can easily add a unique ny and connect each of the actual
exits to it.

The cFG provides a graphical representation of the possible runtime control-
flow paths. The crG differs from the syntax-oriented IRs, such as an AST, in
which the edges show grammatical structure. Consider the following CFG for
a while loop:

while(i<100) while 1<100
begin N\
stmt, stmt,
end
stmt, stmt,

The edge from stmt| back to the loop header creates a cycle; the AsT for this
fragment would be acyclic. For an if-then-else construct, the CFG is acyclic:

if (x=y) if (x=y)
then stmt,
else stmt, stmty stmt,
stmty
Stmts

It shows that control always flows from stmt; and stmt; to stmt3. In an AST,
that connection is implicit, rather than explicit.

Compilers typically use a CFG in conjunction with another 1r. The CFG rep-
resents the relationships among blocks, while the operations inside a block
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I TloadAl rarp,@ = ra e L ", ra/”r\\

2 loadl 2 = r S // I
3  loadAl rarp.@ = ry 6 3 // \\ \
4 loadAl rarp,@c = rc . b \\
5 loadAl rarp.@d = ry4 7 4 | |
6 mult ra,r, = ra \8/ ; /’
7 mult ra,rp = ra

8 mult ra,rc = ra \9/ ///
9 mult ra,rqy = ra l e

10 storeAl rg = rarp,@a 10//

B FIGURE 5.3 An oc Basic Block and Its Dependence Graph.

are represented with another IR, such as an expression-level AST, a DAG, or
one of the linear IRs. The resulting combination is a hybrid Ir.

Some authors recommend building CFGs in which each node represents a
shorter segment of code than a basic block. The most common alternative
Single-statement blocks block is a single-statement block. Using single-statement blocks can simplify

ablock of code that corresponds to a single algorithms for analysis and optimization.
source-level statement

The tradeoff between a CFG built with single-statement blocks and one built
with basic blocks revolves around time and space. A CFG built on single-
statement blocks has more nodes and edges than a CFG built with basic
blocks. The single-statement version uses more memory and takes longer
to traverse than the basic-block version of a CFG. More important, as the
compiler annotates the nodes and edges in the CFG, the single-statement CFG
has many more sets than the basic-block cFG. The time and space spent in
constructing and using these annotations undoubtedly dwarfs the cost of CFG
construction.

Many parts of the compiler rely on a CFG, either explicitly or implicitly.
Analysis to support optimization generally begins with control-flow analy-
sis and CFG construction (Chapter 9). Instruction scheduling needs a CFG
to understand how the scheduled code for individual blocks flows together
(Chapter 12). Global register allocation relies on a CFG to understand how
often each operation might execute and where to insert loads and stores for
spilled values (Chapter 13).

Dependence Graph
Data-dependence graph Compilers also use graphs to encode the flow of values from the point where
a graph that models the flow of values from a value is created, a definition, to any point where it is used, a use. A data-

definitions to uses in a code fragment dependence graph embodies this relationship. Nodes in a data-dependence
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1 x < 0 2 @
: /

2 i« 1 l ’///

3 while (i < 100) 3 4/ 1

4 if (ali] > 0) Y /'7

5 then x <« x + a[i] 65

6 i« i+ 1 l

7 print x 7

M FIGURE 5.4 Interaction between Control Flow and the Dependence Graph.

graph represent operations. Most operations contain both definitions and
uses. An edge in a data-dependence graph connects two nodes, one that
defines a value and another that uses it. We draw dependence graphs with
edges that run from definition to use.

To make this concrete, Figure 5.3 reproduces the example from Figure 1.3
and shows its data-dependence graph. The graph has a node for each state-
ment in the block. Each edge shows the flow of a single value. For example,
the edge from 3 to 7 reflects the definition of r} in statement 3 and its sub-
sequent use in statement 7. raprp contains the starting address of the local
data area. Uses of rapp refer to its implicit definition at the start of the
procedure; they are shown with dashed lines.

The edges in the graph represent real constraints on the sequencing of
operations—a value cannot be used until it has been defined. However,
the dependence graph does not fully capture the program’s control flow.
For example, the graph requires that 1 and 2 precede 6. Nothing, how-
ever, requires that 1 or 2 precedes 3. Many execution sequences preserve
the dependences shown in the code, including (1,2,3,4,5,6,7,8,9, 10) and
(2,1,6,3,7,4,8,5,9,10). The freedom in this partial order is precisely what
an “out-of-order” processor exploits.

At a higher level, consider the code fragment shown in Figure 5.4. Refer-
ences to a[ i] are shown deriving their values from a node representing prior
definitions of a. This connects all uses of a together through a single node.
Without sophisticated analysis of the subscript expressions, the compiler
cannot differentiate between references to individual array elements.

This dependence graph is more complex than the previous example. Nodes
5 and 6 both depend on themselves; they use values that they may have
defined in a previous iteration. Node 6, for example, can take the value of
i from either 2 (in the initial iteration) or from itself (in any subsequent
iteration). Nodes 4 and 5 also have two distinct sources for the value of i:
nodes 2 and 6.



234 CHAPTER 5 Intermediate Representations

Interprocedural
Any technique that examines interactions across
multiple procedures is called interprocedural.

Intraprocedural

Any technique that limits its attention to a single
procedure is called intraprocedural.

Call graph

a graph that represents the calling relationships
among the procedures in a program

The call graph has a node for each procedure and
an edge for each call site.

Data-dependence graphs are often used as a derivative IR—constructed from
the definitive IR for a specific task, used, and then discarded. They play a
central role in instruction scheduling (Chapter 12). They find application in
a variety of optimizations, particularly transformations that reorder loops to
expose parallelism and to improve memory behavior; these typically require
sophisticated analysis of array subscripts to determine more precisely the
patterns of access to arrays. In more sophisticated applications of the data-
dependence graph, the compiler may perform extensive analysis of array
subscript values to determine when references to the same array can overlap.

Call Graph

To address inefficiencies that arise across procedure boundaries, some com-
pilers perform interprocedural analysis and optimization. To represent the
runtime transfers of control between procedures, compilers use a call graph.
A call graph has a node for each procedure and an edge for each distinct
procedure call site. Thus, the code calls g from three textually distinct sites
in p; the call graph has three edges ( p, ¢), one for each call site.

Both software-engineering practice and language features complicate the
construction of a call graph.

m Separate compilation, the practice of compiling small subsets of a
program independently, limits the compiler’s ability to build a call
graph and to perform interprocedural analysis and optimization. Some
compilers build partial call graphs for all of the procedures in a
compilation unit and perform analysis and optimization across that set.
To analyze and optimize the whole program in such a system, the
programmer must present it all to the compiler at once.

m  Procedure-valued parameters, both as input parameters and as return
values, complicate call-graph construction by introducing ambiguous
call sites. If fee takes a procedure-valued argument and invokes it, that
site has the potential to call a different procedure on each invocation of
fee. The compiler must perform an interprocedural analysis to limit the
set of edges that such a call induces in the call graph.

m  Object-oriented programs with inheritance routinely create ambiguous
procedure calls that can only be resolved with additional type
information. In some languages, interprocedural analysis of the class
hierarchy can provide the information needed to disambiguate these
calls. In other languages, that information cannot be known until
runtime. Runtime resolution of ambiguous calls poses a serious problem
for call graph construction; it also creates significant runtime overheads
on the execution of the ambiguous calls.

Section 9.4 discusses practical techniques for call graph construction.
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SECTION REVIEW

Graphical IRs present an abstract view of the code being compiled. They
differ in the meaning imputed to each node and each edge.

m Inaparse tree, nodes represent syntactic elements in the source-
language grammar, while the edges tie those elements together into
a derivation.

m Inanabstract syntax tree or a dag, nodes represent concrete items
from the source-language program, and edges tie those together in a
way that indicates control-flow relationships and the flow of data.

m Inacontrol-flow graph, nodes represent blocks of code and edges
represent transfers of control between blocks. The definition of a
block may vary, from a single statement through a basic block.

m Inadependence graph, the nodes represent computations and the
edges represent the flow of values from definitions to uses; as such,
edges also imply a partial order on the computations.

m Inacall graph, the nodes represent individual procedures and the
edges represent individual call sites. Each call site has a distinct edge
to provide a representation for call-site specific knowledge, such as
parameter bindings.

Graphical IRs encode relationships that may be difficult to represent in
alinear IR. A graphical IR can provide the compiler with an efficient way
to move between logically connected points in the program, such as the
definition of a variable and its use, or the source of a conditional branch
and its target.

[
Review Questions
1. Compare and contrast the difficulty of writing a prettyprinter for a  Prettyprinter
parse tree, an AST and a DAG. What additional information would be  aprogram that walks a syntax tree and writes
needed to reproduce the original code’s format precisely? outthe original code
2. How does the number of edges in a dependence graph grow as a
function of the input program'’s size?

5.3 LINEAR IRS

The alternative to a graphical 1R is a linear IR. An assembly-language pro-
gram is a form of linear code. It consists of a sequence of instructions that
execute in their order of appearance (or in an order consistent with that
order). Instructions may contain more than one operation; if so, those oper-
ations execute in parallel. The linear IRs used in compilers resemble the
assembly code for an abstract machine.
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The logic behind using a linear form is simple. The source code that serves
as input to the compiler is a linear form, as is the target-machine code that
it emits. Several early compilers used linear Irs; this was a natural nota-
tion for their authors, since they had previously programmed in assembly
code.

Linear 1rs impose a clear and useful ordering on the sequence of operations.
For example, in Figure 5.3, contrast the 1Loc code with the data-dependence
graph. The 1Loc code has an implicit order; the dependence graph imposes a
partial ordering that allows many different execution orders.

If a linear IR is used as the definitive representation in a compiler, it must
include a mechanism to encode transfers of control among points in the
program. Control flow in a linear 1R usually models the implementation of
control flow on the target machine. Thus, linear codes usually include con-
ditional branches and jumps. Control flow demarcates the basic blocks in a
linear 1R; blocks end at branches, at jumps, or just before labelled operations.

Taken branch In the 1LoC used throughout this book, we include a branch or jump at the
In most isas, conditional branches use one label.  end of every block. In 1LOC, the branch operations specify a label for both
Control flows either to the label, called the taken e taken path and the not-taken path. This eliminates any fall-through paths

branch, orto the operation that follows the label, at the end of a block. Together, these stipulations make it easier to find basic
called the not-taken or fall-through branch.
blocks and to reorder them.

Many kinds of linear 1rs have been used in compilers.

m  One-address codes model the behavior of accumulator machines and
stack machines. These codes expose the machine’s use of implicit
names so that the compiler can tailor the code for it. The resulting code
is quite compact.

Destructive operation m Two-address codes model a machine that has destructive operations.

an operation in which one of the operands is These codes fell into disuse as memory constraints became less

always redefined with the result important; a three-address code can model destructive operations
explicitly.

m  Three-address codes model a machine where most operations take two
operands and produce a result. The rise of RISC architectures in the
1980s and 1990s made these codes popular, since they resemble a
simple RisC machine.

The remainder of this section describes two linear Irs that remain popular:
stack-machine code and three-address code. Stack-machine code offers a
compact, storage-efficient representation. In applications where IR size mat-
ters, such as a Java applet transmitted over a network before execution,
stack-machine code makes sense. Three-address code models the instruction
format of a modern RIsC machine; it has distinct names for two operands and
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aresult. You are already familiar with one three-address code: the 1LoC used
in this book.

5.3.1 Stack-Machine Code

Stack-machine code, a form of one-address code, assumes the presence of
a stack of operands. Most operations take their operands from the stack
and push their results back onto the stack. For example, an integer sub-

tract operation would remove the top two elements from the stack and push push 2
their difference onto the stack. The stack discipline creates a need for some push b
new operations. Stack 1rs usually include a swap operation that interchanges multiply
the top two elements of the stack. Several stack-based computers have been EBE? ra it

built; this IR seems to have appeared in response to the demands of com-
piling for these machines. Stack-machine code for the expression a - 2 xb
appears in the margin.

Stack-Machine Code

Stack-machine code is compact. The stack creates an implicit name space
and eliminates many names from the 1r. This shrinks the size of a program
in IR form. Using the stack, however, means that all results and arguments
are transitory, unless the code explicitly moves them to memory.

Stack-machine code is simple to generate and to execute. Smalltalk 80 and

Java both use bytecodes, a compact IR similar in concept to stack-machine  Bytecode

code. The bytecodes either run in an interpreter or are translated into target-  anRdesigned specifically for its compact form;
machine code just prior to execution. This creates a system with a compact ~ WPpically code foran abstract stack machine
form of the program for distribution and a reasonably simple scheme for  The name derives from its limited size; opcodes

porting the language to a new target machine (implementing the interpreter).  arelimited to one byte or less.

5.3.2 Three-Address Code

In three-address code most operations have the form i < j op k, with an

operator (op), two operands (j and k) and one result (i). Some opera- t] <« 2

tors, such as an immediate load and a jump, will need fewer arguments. tp < b

Sometimes, an operation with more than three addresses is needed. Three ‘E3 < b X1
. . . <~ a

address code for a - 2 x b appears in the margin. 1ILOC is another example of tg <ty -ty

a three-address code.
Three-Address Code

Three-address code is attractive for several reasons. First, three-address code
is reasonably compact. Most operations consist of four items: an opera-
tion and three names. Both the operation and the names are drawn from
limited sets. Operations typically require 1 or 2 bytes. Names are typically
represented by integers or table indices; in either case, 4 bytes is usually
enough. Second, separate names for the operands and the target give the
compiler freedom to control the reuse of names and values; three-address
code has no destructive operations. Three-address code introduces a new set
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of compiler-generated names—names that hold the results of the various
operations. A carefully chosen name space can reveal new opportunities
to improve the code. Finally, since many modern processors implement
three-address operations, a three-address code models their properties well.

Within three-address codes, the set of specific supported operators and their
level of abstraction can vary widely. Often, a three-address IR will contain
mostly low-level operations, such as jumps, branches, and simple mem-
ory operations, alongside more complex operations that encapsulate control
flow, such as max or min. Representing these complex operations directly
makes them easier to analyze and optimize.

For example, mvc] (move characters long) takes a source address, a des-
tination address, and a character count. It copies the specified number of
characters from memory beginning at the source address to memory begin-
ning at the destination address. Some machines, like the 1BM 370, implement
this functionality in a single instruction (mvc1 is a 370 opcode). On machines
that do not implement the operation in hardware, it may require many
operations to perform such a copy.

Adding mvc1 to the three-address code lets the compiler use a compact rep-
resentation for this complex operation. It allows the compiler to analyze,
optimize, and move the operation without concern for its internal workings.
If the hardware supports an mvc1-like operation, then code generation will
map the IR construct directly to the hardware operation. If the hardware does
not, then the compiler can translate mvc1 into a sequence of lower-level 1R
operations or a procedure call before final optimization and code generation.

5.3.3 Representing Linear Codes

Many data structures have been used to implement linear 1rs. The choices
that a compiler writer makes affect the costs of various operations on IR
code. Since a compiler spends most of its time manipulating the IR form of
the code, these costs deserve some attention. While this discussion focuses
on three-address codes, most of the points apply equally to stack-machine
code (or any other linear form).

Three-address codes are often implemented as a set of quadruples. Each

t] < 2 quadruple is represented with four fields: an operator, two operands (or
tp < b sources), and a destination. To form blocks, the compiler needs a mechanism
E3 : 21 X 12 to connect individual quadruples. Compilers implement quadruples in a
té ty -ty variety of ways.

Three-Address Code Figure 5.5 shows three different schemes for implementing the three-

address code for a - 2xb, repeated in the margin. The simplest scheme, in
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Target Op Arg; Arg> _.——>
oo 2 B EDN
S~ tbl 0 L[t
ty < ] ] |
b B el Tl [to] - [ta]ts]
(a) Simple Array (b) Array of Pointers (c) Linked List

M FIGURE 5.5 Implementations of Three-Address Code fora - 2 X b.

Figure 5.5a, uses a short array to represent each basic block. Often, the com-
piler writer places the array inside a node in the CFG. (This may be the most
common form of hybrid 1r.) The scheme in Figure 5.5b uses an array of
pointers to group quadruples into a block; the pointer array can be contained
in a CFG node. The final scheme, in Figure 5.5c¢, links the quadruples together
to form a list. It requires less storage in the CFG node, at the cost of restricting
accesses to sequential traversals.

Consider the costs incurred in rearranging the code in this block. The first
operation loads a constant into a register; on most machines this translates
directly into an immediate load operation. The second and fourth operations
load values from memory, which on most machines might incur a multicycle
delay unless the values are already in the primary cache. To hide some of the
delay, the instruction scheduler might move the loads of b and a in front of
the immediate load of 2.

In the simple array scheme, moving the load of b ahead of the immedi-
ate load requires saving the four fields of the first operation, copying the
corresponding fields from the second slot into the first slot, and overwrit-
ing the fields in the second slot with the saved values for the immediate
load. The array of pointers requires the same three-step approach, except
that only the pointer values must be changed. Thus, the compiler saves the
pointer to the immediate load, copies the pointer to the load of b into
the first slot in the array, and overwrites the second slot in the array with
the saved pointer to the immediate load. For the linked list, the operations
are similar, except that the complier must save enough state to let it traverse
the list.

Now, consider what happens in the front end when it generates the initial
round of IR. With the simple array form and the array of pointers, the com-
piler must select a size for the array—in effect, the number of quadruples
that it expects in a block. As it generates the quadruples, it fills in the array.
If the array is too large, it wastes space. If it is too small, the compiler must
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INTERMEDIATE REPRESENTATIONS IN ACTUAL USE

In practice, compilers use a variety of IRs. Legendary FORTRAN compilers of
yore, such as IBM's FORTRAN H compilers, used a combination of quadru-
ples and control-flow graphs to represent the code for optimization. Since
FORTRAN H was written in FORTRAN, it held the IR in an array.

For a long time, GCC relied on a very low-level IR, called register trans-
fer language (RTL). In recent years, GCC has moved to a series of IRs. The
parsers initially produce a near-source tree; these trees can be language
specific but are required to implement parts of a common interface. That
interface includes a facility for lowering the trees to the second IR, GIMPLE.
Conceptually, GIMPLE consists of a language-independent, tree-like struc-
ture for control-flow constructs, annotated with three-address code for
expressions and assignments. It is designed, in part, to simplify analysis.
Much of GCC's new optimizer uses GIMPLE; for example, GCC builds static
single-assignment form on top of GIMPLE. Ultimately, GCC translates GIMPLE
into RTL for final optimization and code generation.

The LLVM compiler uses a single low-level IR; in fact, the name LLVM stands
for "low-level virtual machine." LLVM's IR is a linear three-address code. The
IRis fully typed and has explicit support for array and structure addresses. It
provides support for vector or SIMD data and operations. Scalar values are
maintained in SSA form throughout the compiler. The LLVM environment
uses GCC front ends, so LLVM IR is produced by a pass that performs GIMPLE-
to-LLVM translation.

The Open64 compiler, an open-source compiler for the IA-64 architec-
ture, uses a family of five related IRs, called WHIRL. The initial translation in
the parser produces a near-source-level WHIRL. Subsequent phases of the
compiler introduce more detail to the WHIRL program, lowering the level
of abstraction toward the actual machine code. This lets the compiler use a
source-level AST for dependence-based transformations on the source text
and a low-level IR for the late stages of optimization and code generation.

reallocate it to obtain a larger array, copy the contents of the “too small”
array into the new, larger array, and deallocate the small array. The linked
list, however, avoids these problems. Expanding the list just requires
allocating a new quadruple and setting the appropriate pointer in the
list.

A multipass compiler may use different implementations to represent the
IR at different points in the compilation process. In the front end, where the
focus is on generating the IR, a linked list might both simplify the implemen-
tation and reduce the overall cost. In an instruction scheduler, with its focus
on rearranging the operations, either of the array implementations might
make more sense.
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Notice that some information is missing from Figure 5.5. For example, no
labels are shown because labels are a property of the block rather than any
individual quadruple. Storing a list of labels with the block saves space in
each quadruple; it also makes explicit the property that labels occur only on
the first operation in a basic block. With labels attached to a block, the com-
piler can ignore them when reordering operations inside the block, avoiding
one more complication.

5.3.4 Building a Control-Flow Graph
from a Linear Code

Compilers often must convert between different 1Rrs, often different styles
of IRs. One routine conversion is to build a CFG from a linear IR such as
1Loc. The essential features of a CFG are that it identifies the beginning and
end of each basic block and connects the resulting blocks with edges that
describe the possible transfers of control among blocks. Often, the compiler
must build a cFG from a simple, linear IR that represents a procedure.

As a first step, the compiler must find the beginning and the end of each basic
block in the linear 1r. We will call the initial operation of a block a leader.
An operation is a leader if it is the first operation in the procedure, or if it
has a label that is, potentially, the target of some branch. The compiler can
identify leaders in a single pass over the 1R, shown in Figure 5.6a. It iterates
over the operations in the program, in order, finds the labelled statements,

and records them as leaders. Ambiguous jump
a branch or jump whose target cannot be
If the linear IR contains labels that are not used as branch targets, then treat-  determined at compile time; typically, ajump to

ing labels as leaders may unnecessarily split blocks. The algorithm could  anaddressin a register

for i < 1 to next - 1
Jj <« Leader[i] + 1
while (j < n and op ¢ Leader)

g« Jg+1
J<«J-1
Last[i] <« J

if opy is "cbr r—1y,1," then
add edge from j to node for 1;

next <« 1 add edge from j to node for 1,
Leader[next++] « 1 . s "
else if opj 1s jumpl — 11" then

for i < 1 ton add edge from j to node for 14

if op; has a Tabel T; then ] ) ]
Leader[next++] « i else if opj is "jump—ri" then
create a CFG node for 1I; add edges from j to all labelled statements
(a) Finding Leaders (b) Finding Last and Adding Edges

M FIGURE 5.6 Building a Control-Flow Graph.
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COMPLICATIONS IN CFG CONSTRUCTION

Features of the IR, the target machine, and the source language can
complicate CFG construction.

Ambiguous jumps may force the compiler to introduce edges that are
never feasible at runtime. The compiler writer can improve this situation by
including features in the IR that record potential jump targets. ILOC includes
the tb1 pseudo-operation to let the compiler record the potential targets
of an ambiguous jump. Anytime the compiler generates a jump, it should
follow the jump with a set of tbh1 operations that record the possible
branch targets. CFG construction can use these hints to avoid spurious
edges.

If the compiler builds a CFG from target-machine code, features of the tar-
get architecture can complicate the process. The algorithm in Figure 5.6
assumes that all leaders, except the first, are labelled. If the target machine
has fall-through branches, the algorithm must be extended to recog-
nize unlabeled statements that receive control on a fall-through path.
PC-relative branches cause a similar set of problems.

Branch delay slots introduce several problems. A labelled statement that
sits in a branch delay slot is a member of two distinct blocks. The compiler
can cure this problem by replication—creating new (unlabeled) copies of
the operations in the delay slots. Delay slots also complicate finding the
end of a block. The compiler must place operations located in delay slots
into the block that precedes the branch or jump.

If a branch or jump can occur in a branch delay slot, the CFG builder must
walk forward from the leader to find the block-ending branch—the first
branch it encounters. Branches in the delay slot of a block-ending branch
can, themselves, be pending on entry to the target block. They can split
the target block and force creation of new blocks and new edges. This kind
of behavior seriously complicates CFG construction.

Some languages allow jumps to labels outside the current procedure. In
the procedure containing the branch, the branch target can be modelled
with a new CFG node created for that purpose. The complication arises
on the other end of the branch. The compiler must know that the target
label is the target of a nonlocal branch, or else subsequent analysis may
produce misleading results. For this reason, languages such as Pascal or
Algol restricted nonlocal gotos to labels in visible outer lexical scopes. C
requires the use of the functions setjmp and Tongjmp to expose these
transfers.

track which labels are jump targets. However, if the code contains any ambi-
guous jumps, then it must treat all labelled statements as leaders anyway.

The second pass, shown in Figure 5.6b, finds every block-ending operation.
It assumes that every block ends with a branch or a jump and that branches
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specify labels for both outcomes—a “branch taken” label and a “branch not
taken” label. This simplifies the handling of blocks and allows the compiler’s
back end to choose which path will be the “fall through” case of a branch.
(For the moment, assume branches have no delay slots.)

To find the end of each block, the algorithm iterates through the blocks, in
order of their appearance in the Leader array. It walks forward through the 1r
until it finds the leader of the next block. The operation immediately before
that leader ends the current block. The algorithm records that operation’s
index in Last[ 7], so that the pair (Leader([7],Last[1]) describes block i.
It adds edges to the CFG as needed.

For a variety of reasons, the CFG should have a unique entry node ng and a
unique exit node 7 ¢. The underlying code should have this shape. If it does
not, a simple postpass over the graph can create ng and ns.

SECTION REVIEW

Linear IRs represent the code being compiled as an ordered sequence
of operations. Linear IRs can vary in their level of abstraction; the source
code for a program in a plain text file is a linear form, as is the assembly
code for that same program. Linear IRs lend themselves to compact,
human-readable representations.

Two widely used linear IRs are bytecodes, generally implemented as a
one-address code with implicit names on many operations, and three-
address code, generally implemented as a set of binary operations that
have distinct name fields for two operands and one result.

|

Review Questions

1. Consider the expression a X 2 +a X 2 x b, Translate it into stack machine
code and into three address code. Compare and contrast the number
of operations and the number of operands in each form. How do they
compare against the trees in Figure 5.1?

2. Sketch an algorithm to build control-flow graphs from ILOC for
programs that include spurious labels and ambiguous jumps.

5.4 MAPPING VALUES TO NAMES

The choice of a specific IR and a level of abstraction helps determine what
operations the compiler can manipulate and optimize. For example, a source-
level AsT makes it easy to find all the references to an array x. At the same
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time, it hides the details of the address calculations required to access an
element of x. In contrast, a low-level, linear 1R such as 1ILOC exposes the
details of the address calculation, at the cost of obscuring the fact that a
specific reference relates to x.

Similarly, the discipline that the compiler uses to assign internal names to
the various values computed during execution has an effect on the code that
it can generate. A naming scheme can expose opportunities for optimization
or it can obscure them. The compiler must invent names for many, if not
all, of the intermediate results that the program produces when it executes.
The choices that it makes with regard to names determines, to a large extent,
which computations can be analyzed and optimized.

5.4.1 Naming Temporary Values

The 1R form of a program usually contains more detail than does the source
version. Some of those details are implicit in the source code; others result
from deliberate choices in the translation. To see this, consider the four-line
block of source code shown in Figure 5.7a. Assume that the names refer to
distinct values.

The block deals with just four names, {a, b, c, d}. It refers to more than
four values. Each of b, c, and d have a value before the first statement exe-
cutes. The first statement computes a new value, b +c, as does the second,
which computes a - d. The expression b +c in the third statement computes

t1 <« b t1 < b
ty) <« ¢ ty <« ¢
t3 «— t1 + 1t t3 <« t1 + t
a <« t3 a <« i3
tg <« d ty « d
t1 < t3 - ts ts < t3 - t4
b <« t b <« t5
a < b+c tr <« t1 + t tg <« ts + o
b <~ a -d c <« 1t c <« tg
c < b+c tg < t3 - t4 ts < t3 - t4
d <~ a -d d <« ty d <« tg
(a) Source Code (b) Source Names (c) Value Names

M FIGURE 5.7 Naming Leads to Different Translations.
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a different value than the earlier b +c, unless ¢ =d initially. Finally, the last
statement computes a - d; its result is always identical to that produced by
the second statement.

The source code names tell the compiler little about the values that they hold.
For example, the use of b in the first and third statements refer to distinct
values (unless c=d). The reuse of the name b conveys no information; in
fact, it might mislead a casual reader into thinking that the code sets a and c
to the same value.

When the compiler names each of these expressions, it can chose names in
ways that specifically encode useful information about their values. Con-
sider, for example, the translations shown in Figures 5.7b and 5.7c. These
two variants were generated with different naming disciplines.

The code in Figure 5.7b uses fewer names than the code in 5.7c. It
follows the source code names, so that a reader can easily relate the code
back to the code in Figure 5.7a. The code in Figure 5.7c uses more names
than the code in 5.7b. Its naming discipline reflects the computed values and
ensures that textually identical expressions produce the same result. This
scheme makes it obvious that a and ¢ may receive different values, while b
and d must receive the same value.

As another example of the impact of names, consider again the representa-
tion of an array reference, A1, j]. Figure 5.8 shows two IR fragments that
represent the same computation at very different levels of abstraction. The
high-level 1R, in Figure 5.8a, contains all the essential information and is
easy to identify as a subscript reference. The low-level IR, in Figure 5.8b,

load 1 = r]
sub rj,rp. = re
loadl 10 = ra
mult ro,rz3 = r
sub ri,rp = rsg
OO oo
loadl @A = ry

add rz,rg = rg
load rg = PAU,

(a) Source-Level Abstract Syntax Tree  (b) Low-Level Linear Code (ILOC)

M FIGURE 5.8 Different Levels of Abstraction for an Array Subscript Reference .
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exposes many details to the compiler that are implicit in the high-level AsT
fragment. All of the details in the low-level IR can be inferred from the
source-level AST.

In the low-level 1R, each intermediate result has its own name. Using distinct
names exposes those results to analysis and transformation. In practice, most
of the improvement that compilers achieve in optimization arises from capi-
talizing on context. To make that improvement possible, the IR must expose
the context. Naming can hide context, as when it reuses one name for many
distinct values. It can also expose context, as when it creates a correspon-
dence between names and values. This issue is not specifically a property
of linear codes; the compiler could use a lower-level AsT that exposed the
entire address computation.

5.4.2 Static Single-Assignment Form

SSA form Static single-assignment form (SSA) is a naming discipline that many modern

an I that has a value-based name system, compilers use to encode information about both the flow of control and the
created by renaming and use of

flow of data values in the program. In ssa form, names correspond uniquely
pseudo-operations called ¢-functions

to specific definition points in the code; each name is defined by one oper-
ation, hence the name static single assignment. As a corollary, each use of
a name as an argument in some operation encodes information about where
the value originated; the textual name refers to a specific definition point. To
reconcile this single-assignment naming discipline with the effects of con-
trol flow, ssa form inserts special operations, called ¢-functions, at points
where control-flow paths meet.

ssA encodes hoth control and value flow. It is
used widely in optimization (see Section 9.3).

¢-function A program is in ssA form when it meets two constraints: (1) each definition
A ¢-function takes several names and merges has a distinct name; and (2) each use refers to a single definition. To trans-
them, defining a new name. form an IR program to ssA form, the compiler inserts ¢-functions at points

where different control-flow paths merge and it then renames variables to
make the single-assignment property hold.

To clarify the impact of these rules, consider the small loop shown on the
left side of Figure 5.9. The right column shows the same code in ssa form.
Variable names include subscripts to create a distinct name for each defini-
tion. ¢-functions have been inserted at points where multiple distinct values
can reach the start of a block. Finally, the whi1e construct has been rewritten
with two distinct tests, to reflect the fact that the initial test refers to xg while
the end-of-loop test refers to x».

The ¢-function’s behavior depends on context. It defines its target SSA name
with the value of its argument that corresponds to the edge along which
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XO < ..
Yo < oo
if (xg = 100) goto next

o Toop: X1 < ¢(Xp.Xp)

Y1 < ¢Wg.y2)

Xp < X1 +1

yz < yl + XZ

y <y tx if (xp, < 100) goto Toop

y <« -
while(x < 100)
X < x +1

next: x3 < ¢(xg.xp)
Y3 < ¢(¥p.¥2)

(a) Original Code (b) Code in SSA Form

M FIGURE 5.9 A Small Loop in ssa Form.

control entered the block. Thus, when control flows into the loop from the
block above the loop, the ¢-functions at the top of the loop body copy the
values of xg and yq into x; and y;, respectively. When control flows into
the loop from the test at the loop’s bottom, the ¢-functions select their other
arguments, x» and y».

On entry to a basic block, all of its ¢-functions execute concurrently, before
any other statement. First, they all read the values of the appropriate argu-
ments, then they all define their target ssA names. Defining their behavior in
this way allows the algorithms that manipulate ssa form to ignore the order-
ing of ¢-functions at the top of a block—an important simplification. It can
complicate the process of translating ssa form back into executable code, as
we shall see in Section 9.3.5.

ssa form was intended for code optimization. The placement of ¢-functions
in ssA form encodes information about both the creation of values and their
uses. The single-assignment property of the name space allows the com-
piler to sidestep many issues related to the lifetimes of values; for example,
because names are never redefined or killed, the value of a name is avail-
able along any path that proceeds from that operation. These two properties
simplify and improve many optimization techniques.

The example exposes some oddities of ssA form that bear explanation. Con-
sider the ¢-function that defines x1. Its first argument, xg, is defined in the
block that precedes the loop. Its second argument, x», is defined later in the
block labelled 1oop. Thus, when the ¢ first executes, one of its arguments
is undefined. In many programming-language contexts, this would cause
problems. Since the ¢-function reads only one argument, and that argument
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THE IMPACT OF NAMING

In the late 1980s, we experimented with naming schemes in a FORTRAN
compiler. The first version generated a new temporary register for each
computation by bumping a simple counter. It produced large name spaces,
forexample, 985 names for a 210-line implementation of the singular value
decomposition (SVD). The name space seemed large for the program size.
It caused speed and space problems in the register allocator, where the
size of the name space governs the size of many data structures. (Today,
we have better data structures and faster machines with more memory.)

The second version used an allocate/free protocol to manage names. The
front end allocated temporaries on demand and freed them when the
immediate uses were finished. This scheme used fewer names; for example,
SVD used roughly 60 names. It sped up allocation, reducing, for example,
the time to find live variables in SVD by 60 percent.

Unfortunately, associating multiple expressions with a single temporary
name obscured the flow of data and degraded the quality of optimization.
The decline in code quality overshadowed any compile-time benefits.

Further experimentation led to a short set of rules that yielded strong
optimization while mitigating growth in the name space.

1. Each textual expression received a unique name, determined by

entering the operator and operands into a hash table. Thus, each

occurrence of an expression, for example, r17+r»1, targeted the
same register.

In{op) riy,rjy = ry, kwaschosensothati,j<k.

3. Register copy operations (121 r; = r in ILOC) were allowed to have
i>J onlyif rj corresponded to a scalar program variable. The registers
for such variables were only defined by copy operations. Expressions
evaluated into their "natural" register and then were moved into the
register for the variable.

4. Each store operation (store ri = rj inILOC) is followed by a copy
from rj into the variable’s named register. (Rule 1 ensures that loads
from that location always target the same register. Rule 4 ensures that
the virtual register and memory location contain the same value.)

N

This name-space scheme used about 90 names for SVD, but exposed all the
optimizations found with the first name-space scheme. The compiler used
these rules until we adopted SSA form, with its discipline for names.

corresponds to the most recently taken edge in the CFG, it can never read the
undefined value.

¢-functions do not conform to a three-address model. A ¢-function takes
an arbitrary number of operands. To fit ssa form into a three-address IR, the
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BUILDING SSA

Static single-assignment form is the only IR we describe that does not have
an obvious construction algorithm. Section 9.3 presents the algorithm in
detail. However, a sketch of the construction process will clarify some of
the issues. Assume that the input program is already in ILOC form. To
convert it to an equivalent linear form of SSA, the compiler must first insert
¢-functions and then rename the ILOC virtual registers.

The simplest way to insert ¢-functions adds one for each ILOC virtual reg-
ister at the start of each basic block that has more than one predecessor
in the control-flow graph. This inserts many unneeded ¢-functions; most
of the complexity in the full algorithm is aimed at reducing the number of
extraneous ¢-functions.

To rename the ILOC virtual registers, the compiler can process the blocks,
in a depth-first order. For each virtual register, it keeps a counter. When
the compiler encounters a definition of rj, it increments the counter for
ri,say to k, and rewrites the definition with the name r e As the compiler
traverses the block, it rewrites each use of rj with ry, until it encounters
another definition of rj. (That definition bumps the counter to k+1.) At
the end of a block, the compiler looks down each control-flow edge and
rewrites the appropriate ¢-function parameter for rj in each block that
has multiple predecessors.

After renaming, the code conforms to the two rules of SSA form. Each
definition creates a unique name. Each use refers to a single definition. Sev-
eral better SSA construction algorithms exist; they insert fewer ¢-functions
than this simple approach.

compiler writer must include a mechanism for representing operations with switch on yg

longer operand lists. Consider the block at the end of a case statement as

shown in the margin. Xl‘—& :X/15<-/"'><16<—-'-
The ¢-function for x;7 must have an argument for each case. A ¢-operation X17¢@..)

has one argument for each entering control-flow path; thus, it does not fit
into the fixed-arity, three-address scheme.

In a simple array representation for three-address code, the compiler writer
must either use multiple slots for each ¢-operation or use a side data structure
to hold the ¢-operations’ arguments. In the other two schemes for imple-
menting three-address code shown in Figure 5.5, the compiler can insert
tuples of varying size. For example, the tuples for load and load immediate
might have space for just two names, while the tuple for a ¢-operation could
be large enough to accommodate all its operands.
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5.4.3 Memory Models

Just as the mechanism for naming temporary values affects the informa-
tion that can be represented in an IR version of a program, so, too, does the
compiler’s choice of a storage location for each value. The compiler must
determine, for each value computed in the code, where that value will reside.
For the code to execute, the compiler must assign a specific location, such as
register r13 or 16 bytes from the label L0089. Before the final stages of code
generation, however, the compiler may use symbolic addresses that encode
a level in the memory hierarchy, for example, registers or memory, but not
a specific location within that level.

Consider the 1Loc examples used throughout this book. A symbolic memory
address is denoted by prefixing it with the character @. Thus, @x is the offset
of x from the start of the storage area containing it. Since ryrp holds the
activation record pointer, an operation that uses @x and rarp to compute an
address depends, implicitly, on the decision to store the variable x in the
memory reserved for the current procedure’s activation record.

In general, compilers work from one of two memory models.

1. Register-to-Register Model Under this model, the compiler keeps
values in registers aggressively, ignoring any limitations imposed by the
size of the machine’s physical register set. Any value that can legally be
kept in a register for most of its lifetime is kept in a register. Values are
stored to memory only when the semantics of the program require
it—for example, at a procedure call, any local variable whose address is
passed as a parameter to the called procedure must be stored back to
memory. A value that cannot be kept in a register for most of its lifetime
is stored in memory. The compiler generates code to store its value each
time it is computed and to load its value at each use.

2. Memory-to-Memory Model Under this model, the compiler assumes
that all values are kept in memory locations. Values move from memory
to a register just before they are used. Values move from a register to
memory just after they are defined. The number of registers named in
the 1R version of the code can be small compared to the register-
to-register model. In this model, the designer may find it worthwhile to
include memory-to-memory operations, such as a memory-to-memory
add, in the IR.

The choice of memory model is mostly orthogonal to the choice of Ir. The
compiler writer can build a memory-to-memory AST or a memory-to-memory
version of ILOC just as easily as register-to-register versions of either of these
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THE HIERARCHY OF MEMORY OPERATIONS IN ILOC 9X

The ILOC used in this book is abstracted from an IR named ILOC 9X that was
used in a research compiler project at Rice University. ILOC 9X includes a
hierarchy of memory operations that the compiler uses to encode knowl-
edge about values. At the bottom of the hierarchy, the compiler has little
or no knowledge about the value; at the top of the hierarchy, it knows the
actual value. These operations are as follows:

Operation Meaning
Immediate load Loads a known constant value into a register.
Nonvarying load Loads a value that does not change during

execution. The compiler does not know the value,
but can prove that it is not defined by a program
operation.
Scalar load & store Operate on a scalar value, not an array element,
a structure element, or a pointer-based value.
General load & store  Operate on a value that may be an array element,
a structure element, or a pointer-based value. This
is the general-case operation.

By using this hierarchy, the front end can encode knowledge about the tar-
get value directly into the ILOC 9X code. As other passes discover additional
information, they can rewrite operations to change a value from using a
general-purpose load to a more restricted form. If the compiler discovers
that some valueis a known constant, it can replace a general load or a scalar
load of that value with an immediate load. If an analysis of definitions and
uses discovers that some location cannot be defined by any executable
store operation, loads of that value can be rewritten to use a non-varying
load.

Optimizations can capitalize on the knowledge encoded in this fashion. For
example, a comparison between the result of a non-varying load and a con-
stant must itself be invariant—a fact that might be difficult or impossible
to prove with a scalar load or a general load.

IRs. (Stack-machine code and code for an accumulator machine might be
exceptions; they contain their own unique memory models.)

The choice of memory model has an impact on the rest of the compiler.
With a register-to-register model, the compiler typically uses more registers
than the target machine provides. Thus, the register allocator must map the
set of virtual registers used in the 1R program onto the physical registers pro-
vided by the target machine. This often requires insertion of extra load, store,
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and copy operations, making the code slower and larger. With a memory-
to-memory model, however, the IR version of the code typically uses fewer
registers than a modern processor provides. Here, the register allocator looks
for memory-based values that it can hold in registers for longer periods
of time. In this model, the allocator makes the code faster and smaller by
removing loads and stores.

Compilers for RISC machines tend to use the register-to-register model for two
reasons. First, the register-to-register model more closely reflects the instruc-
tion sets of RISC architectures. RISC machines do not have a full complement
of memory-to-memory operations; instead, they implicitly assume that val-
ues can be kept in registers. Second, the register-to-register model allows the
compiler to encode directly in the IR some of the subtle facts that it derives.
The fact that a value is kept in a register means that the compiler, at some
earlier point, had proof that keeping it in a register is safe. Unless it encodes
that fact in the IR, the compiler will need to prove it, again and again.

To elaborate, if the compiler can prove that only one name provides access
to a value, it can keep that value in a register. If multiple names might exist,
the compiler must behave conservatively and keep the value in memory.
For example, a local variable x can be kept in a register, unless it can be
referenced in another scope. In a language that supports nested scopes, like
Pascal or Ada, this reference can occur in a nested procedure. In c, this can
occur if the program takes x’s address, &x, and accesses the value through
that address. In Algol or PL/1, the program can pass x as a call-by-reference
parameter to another procedure.

SECTION REVIEW

The schemes used to name values in a compiler’s IR have a direct effect
on the compiler’s ability to optimize the IR and to generate quality
assembly code from the IR. The compiler must generate internal names
for all values, from variables in the source language program to the
intermediate values computed as part of an address expression for a
subscripted array reference. Careful use of names can encode and expose
facts for late use in optimization; at the same time, proliferation of names
can slow the compiler by forcing it to use larger data structures.

The name space generated in SSA form has gained popularity because
it encodes useful properties; for example, each name corresponds to a
unique definition in the code. This precision can aid in optimization, as
we will see in Chapter 8.

The name space can also encode a memory model. A mismatch between
the memory model and the target machine’s instruction set can compli-
cate subsequent optimization and code generation, while a close match
allows the compiler to tailor carefully to the target machine.
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Review Questions

1. Consider the function fib shown in the margin. Write down the
ILOC that a compiler’s front end might generate for this code under
a register-to-register model and under a memory-to-memory model.
How do the two compare? Under what circumstances might each
memory be desirable?

2. Convert the register-to-register code that you generated in the previ-
ous question into SSA form. Are there ¢-functions whose output value
can never be used?

5.5 SYMBOL TABLES

As part of translation, a compiler derives information about the various enti-
ties manipulated by the program being translated. It must discover and store
many distinct kinds of information. It encounters a wide variety of names—
variables, defined constants, procedures, functions, labels, structures, and
files. As discussed in the previous section, the compiler also generates many
names. For a variable, it needs a data type, its storage class, the name and
lexical level of its declaring procedure, and a base address and offset in
memory. For an array, the compiler also needs the number of dimensions
and the upper and lower bounds for each dimension. For records or struc-
tures, it needs a list of the fields, along with the relevant information for
each field. For functions and procedures, it needs the number of parameters
and their types, as well as the types of any returned values; a more sophisti-
cated translation might record information about what variables a procedure
can reference or modify.

The compiler must either record this information in the IR or re-derive it on
demand. For the sake of efficiency, most compilers record facts rather than
recompute them. These facts can be recorded directly in the 1R. For exam-
ple, a compiler that builds an AsT might record information about variables
as annotations (or attributes) of the node representing each variable’s decla-
ration. The advantage of this approach is that it uses a single representation
for the code being compiled. It provides a uniform access method and a
single implementation. The disadvantage of this approach is that the single
access method may be inefficient—navigating the AST to find the appropriate
declaration has its own costs. To eliminate this inefficiency, the compiler
can thread the IR so that each reference has a link back to the corresponding
declaration. This adds space to the IR and overhead to the IR builder.

The alternative, as we saw in Chapter 4, is to create a central repository for
these facts and provide efficient access to it. This central repository, called
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int fib(int n) {

int x = 1;
inty =1;
int z=1;
while(n > 1)
Z=X+y;
X =Y,
y = z;
n=n-1;
return z;

When the compiler writes the I8 to disk, it may be
cheaper to recompute facts than to write them
and then read them.
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a symbol table, becomes an integral part of the compiler’s IR. The sym-
bol table localizes information derived from potentially distant parts of the
source code. It makes such information easily and efficiently available, and it
simplifies the design and implementation of any code that must refer to infor-
mation about variables derived earlier in compilation. It avoids the expense
of searching the IR to find the portion that represents a variable’s declaration;
using a symbol table often eliminates the need to represent the declarations
directly in the 1R. (An exception occurs in source-to-source translation. The
compiler may build a symbol table for efficiency and preserve the declara-
tion syntax in the IR so that it can produce an output program that closely
resembles the input program.) It eliminates the overhead of making each
reference contain a pointer to the declaration. It replaces both of these with
a computed mapping from the textual name to the stored information. Thus,
in some sense, the symbol table is simply an efficiency trick.

At many places in this text, we refer to “the symbol table.” As we shall see in
Section 5.5.4, the compiler may include several distinct, specialized symbol
tables. A careful implementation might use the same access methods for all
these tables.

Symbol-table implementation requires attention to detail. Because nearly
every aspect of translation refers to the symbol table, efficiency of access
is critical. Because the compiler cannot predict, before translation, the num-
ber of names that it will encounter, expanding the symbol table must be
both graceful and efficient. This section provides a high-level treatment of
the issues that arise in designing a symbol table. It presents the compiler-

specific aspects of symbol-table design and use. For deeper implementation
b details and design alternatives, see Section B.4 in Appendix B.
/ a
() 5.5.1 Hash Tables

A compiler accesses its symbol table frequently. Thus, efficiency is a key
issue in the design of a symbol table. Because hash tables provide constant-
time expected-case lookups, they are the method of choice for implementing
symbol tables. Hash tables are conceptually elegant. They use a hash func-
tion, h, to map names to small integers, and use the small integer to index
the table. With a hashed symbol table, the compiler stores all the information
that it derives about the name # in the table in slot 4(n). The figure in the
margin shows a simple ten-slot hash table. It is a vector of records, each
record holding the compiler-generated description of a single name. The
names a, b, and c have already been inserted. The name d is being inserted,
at h(d) =2.

© 0N O OB~ WN -~ O
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The primary reason to use hash tables is to provide a constant-time expected-
case lookup keyed by a textual name. To achieve this, 4 must be inexpensive
to compute. Given an appropriate function A, accessing the record for n
requires computing /(n) and indexing into the table at h(n). If A maps two
or more symbols to the same small integer, a “collision” occurs. (In the
marginal figure, this would occur if i(d) = 3.) The implementation must
handle this situation gracefully, preserving both the information and the
lookup time. In this section, we assume that 4 is a perfect hash function, that
is, it never produces a collision. Furthermore, we assume that the compiler
knows, in advance, how large to make the table. Appendix B.4 describes
hash-table implementation in more detail, including hash functions, collision
handling, and schemes for expanding a hash table.

Hash tables can be used as an efficient representation for sparse graphs.
Given two nodes, x and y, an entry for the key xy indicates that an edge (x,y)
exists. (This scheme requires a hash function that generates a good distribu-
tion from a pair of small integers; both the multiplicative and universal hash
functions described in Appendix B.4.1 work well.) A well-implemented
hash table can provide fast insertion and a fast test for the presence of a
specific edge. Additional information is required to answer questions such
as “What nodes are adjacent to x?”

5.5.2 Building a Symbol Table

The symbol table defines two interface routines for the rest of the compiler.

1. LookUp(name) returns the record stored in the table at #(name) if one
exists. Otherwise, it returns a value indicating that name was not
found.

2. Insert(name,record) stores the information in record in the table at
h(name). It may expand the table to accommodate the record for name.

The compiler can use separate functions for LookUp and Insert, or they can
be combined by passing LookUp a flag that specifies whether or not to insert
the name. This ensures, for example, that a LookUp of an undeclared variable
will fail—a property useful for detecting a violation of the declare-before-
use rule in syntax-directed translation schemes or for supporting nested
lexical scopes.

This simple interface fits directly into the ad hoc syntax-directed transla-
tion schemes described in Chapter 4. In processing declaration syntax, the
compiler builds up a set of attributes for each variable. When the parser rec-
ognizes a production that declares some variable, it can enter the name and
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AN ALTERNATIVE TO HASHING

Hashing is the method most widely used to organize a compiler’'s symbol
table. Multiset discrimination is an interesting alternative that eliminates
any possibility of worst-case behavior. The critical insight behind multiset
discrimination is that the index can be constructed offline in the scanner.

To use multiset discrimination, the compiler writer must take a different
approach to scanning. Instead of processing the input incrementally, the
compiler scans the entire program to find the complete set of identifiers. As
it discovers each identifier, it creates a tuple (name,position), where name
is the text of the identifier and position is its ordinal position in the list of
classified words, or tokens. It enters all the tuples into a large set.

The next step sorts the set lexicographically. In effect, this creates a set
of subsets, one per identifier. Each of these subsets holds the tuples for
all the occurrences of its identifier. Since each tuple refers to a specific
token, through its position value, the compiler can use the sorted set to
modify the token stream. The compiler makes a linear scan over the set,
processing each subset. It allocates a symbol-table index for the entire
subset, then rewrites the tokens to include that index. This augments the
identifier tokens with their symbol-table indices. If the compiler needs a
textual lookup function, the resulting table is ordered alphabetically for a
binary search.

The price for using this technique is an extra pass over the token stream,
along with the cost of the lexicographic sort. The advantages, from a com-
plexity perspective, are that it avoids any possibility of hashing’s worst-case
behavior and that it makes the initial size of the symbol table obvious, even
before parsing. This technique can be used to replace a hash table in almost
any application in which an offline solution will work.

attributes into the symbol table using Insert. If a variable name can appear
in only one declaration, the parser can call LookUp first to detect a repeated
use of the name. When the parser encounters a variable name outside the
declaration syntax, it uses LookUp to obtain the appropriate information from
the symbol table. LookUp fails on any undeclared name. The compiler writer,
of course, may need to add functions to initialize the table, to store it to and
retrieve it from external media, and to finalize it. For a language with a single
name space, this interface suffices.

5.5.3 Handling Nested Scopes

Few programming languages provide a single unified name space. Most
languages allow a program to declare names at multiple levels. Each of these



5.5 Symbol Tables 257

levels has a scope, or a region in the program’s text where the name can be
used. Each of these levels has a lifetime, or a period at runtime where the
value is preserved.

If the source language allows scopes to be nested one inside another, then the
front end needs a mechanism to translate a reference, such as x, to the proper
scope and lifetime. The primary mechanism that compilers use to perform
this translation is a scoped symbol table.

For the purposes of this discussion, assume that a program can create an
arbitrary number of scopes nested one within another. We will defer an
in-depth discussion of lexical scoping until Section 6.3.1; however, most
programmers have enough experience with the concept for this discussion.
Figure 5.10 shows a c program that creates five distinct scopes. We will
label the scopes with numbers that indicate the nesting relationships among
them. The level 0 scope is the outermost scope, while the level 3 scope is the
innermost one.

The table on the right side of the figure shows the names declared in each
scope. The declaration of b at level 2a hides the level / declaration from
any code inside the block that creates level 2a. Inside level 2b, a reference
to b again refers to the level 1 parameter. In a similar way, the declarations

static int w; /= level 0 =/
int x;

void example(int a, int b) {

int c; /* level 1 x/
{
int b, z; /* level 2a =/
Level Names
} 0 W, Xx,example
{ 1 a, b,c
int a, x; /* level 2b */ 2a b, z
2b a, X
{ 3 c, X

int ¢, x; /% level 3 %/
b=a+b+c+ w;

}

M FIGURE 5.10 Simple Lexical Scoping Example in C.
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of a and X in level 2b hide their earlier declarations (at level / and level 0,
respectively).

This context creates the naming environment in which the assignment state-
ment executes. Subscripting names to show their level, we find that the
assignment refers to

by = agp + by +c3 +w

Notice that the assignment cannot use the names declared in level 2a because
that block closes, along with its scope, before level 2b opens.

To compile a program that contains nested scopes, the compiler must map
each variable reference to its specific declaration. This process, called
name resolution, maps each reference to the lexical level at which it is
declared. The mechanism that compilers use to accomplish this name res-
olution is a lexically scoped symbol table. The remainder of this section
describes the design and implementation of lexically scoped symbol tables.
The corresponding runtime mechanisms, which translate the lexical level of
a reference to an address, are described in Section 6.4.3. Scoped symbol
tables also have direct application in code optimization. For example, the
superlocal value-numbering algorithm presented in Section 8.5.1 relies on a
scoped hash table for efficiency.

The Concept

To manage nested scopes, the parser must change, slightly, its approach to
symbol-table management. Each time the parser enters a new lexical scope,
it can create a new symbol table for that scope. This scheme creates a sheaf
of tables, linked together in an order that corresponds to the lexical nesting
levels. As it encounters declarations in the scope, it enters the information
into the current table. Insert operates on the current symbol table. When
it encounters a variable reference, LookUp must first check the table for the
current scope. If the current table does not hold a declaration for the name, it
checks the table for the surrounding scope. By working its way through the
symbol tables for successively lower-numbered lexical levels, it either finds
the most recent declaration for the name, or fails in the outermost scope,
indicating that the variable has no declaration visible in the current scope.

Figure 5.11 shows the symbol table built in this fashion for our example pro-
gram, at the point where the parser has reached the assignment statement.
When the compiler invokes the modified LookUp function for the name b,
it will fail in level 3, fail in level 2, and find the name in level /. This
corresponds exactly to our understanding of the program—the most recent
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Level 0
Level 1
Level 2b L,
Level 3 | b,
Current uk
X, .o
Level X, -
c,
exa D
c,
w,
a,
a,

M FIGURE 5.11 Simple "Sheaf-of-Tables" Implementation.

declaration for b is as a parameter to examp1e, at level 1. Since the first block  Static coordinate

at level 2, block 2a, has already closed, its symbol table is not on the search  pair, </,0>, that records address information
chain. The level where the symbol is found, / in this case, forms the first about some variable x

part of an address for b. If the symbol-table record includes a storage off- specifies the lexical level where x is declared; o
set for each variable, then the pair (level, offset) specifies where to find b in  specifies the offset within the data area for that
memory—at offset from the start of storage for the level scope. We call this  level.

pair b’s static coordinate.

The Details

To handle this scheme, two additional calls are required. The compiler needs
a call that initializes a new symbol table for a scope and one that finalizes
the table for a scope.

1. InitializeScope() increments the current level and creates a new
symbol table for that level. It links the new table to the enclosing level’s
table and updates the current level pointer used by LookUp and
Insert.

2. FinalizeScope() changes the current-level pointer so that it points to
the table for the scope surrounding the current level and then decrements
the current level. If the compiler needs to preserve the level-by-level
tables for later use, FinalizeScope can either leave the table intact in
memory or write the table to external media and reclaim its space.

To account for lexical scoping, the parser calls InitializeScope each time
it enters a new lexical scope and FinalizeScope each time it exits a lexical
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scope. This scheme produces the following sequence of calls for the program
in Figure 5.10:

1. InitializeScope 10. Insert(b) 19. LookUp(b)
2. Insert(w) 11. Insert(z) 20. LookUp(a)
3. Insert(x) 12. FinalizeScope 21. LookUp(b)
4. Insert(example) 13. InitializeScope 22. LookUp(c)
5. InitializeScope 14. Insert(a) 23. LookUp(w)
6. Insert(a) 15. Insert(x) 24. FinalizeScope
7. Insert(b) 16. InitializeScope 25. FinalizeScope
8. Insert(c) 17. Insert(c) 26. FinalizeScope
9. InitializeScope 18. Insert(x) 27. FinalizeScope

As it enters each scope, the compiler calls InitializeScope. It adds each
name to the table using Insert. When it leaves a given scope, it calls
FinalizeScope to discard the declarations for that scope. For the assign-
ment statement, it looks up each of the names, as encountered. (The order
of the LookUp calls will vary, depending on how the assignment statement is
traversed.)

If FinalizeScope retains the symbol tables for finalized levels in memory,
the net result of these calls will be the symbol table shown in Figure 5.12.
The current level pointer is set to a null value. The tables for all levels are
left in memory and linked together to reflect lexical nesting. The compiler
can provide subsequent passes of the compiler with access to the relevant
symbol-table information by storing a pointer to the appropriate table in the

Level 0
Level 2b Lovel 1
Level 3 b, |
I~ Level 2a
A v
Current b,.--
Level PR i S
c,
exa- -
C,
W,
a,
a,
z,

M FIGURE 5.12 Final Table for the Example.
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IR at the start of each new level. Alternatively, identifiers in the IR can point
directly to their symbol-table entries.

5.5.4 The Many Uses for Symbol Tables

The preceding discussion focused on a central symbol table, albeit one that
might be composed of several tables. In reality, compilers build multiple
symbol tables that they use for different purposes.

Structure Table

The textual strings used to name fields in a structure or record exist in a dis-
tinct name space from the variables and procedures. The name size might
occur in several different structures in a single program. In many program-
ming languages, such as ¢ or Ada, using size as a field in a structure does
not preclude its use as a variable or function name.

For each field in a structure, the compiler needs to record its type, its size,
and its offset inside the record. It gleans this information from the dec-
larations, using the same mechanisms that it uses for processing variable
declarations. It must also determine the overall size for the structure, usually
computed as the sum of the field sizes, plus any overhead space required by
the runtime system.

There are several approaches for managing the name space of field names:

1. Separate Tables The compiler can maintain a separate symbol table for
each record definition. This is the cleanest idea, conceptually. If the
overhead for using multiple tables is small, as in most object-oriented
implementations, then using a separate table and associating it with the
symbol table entry for the structure’s name makes sense.

2. Selector Table The compiler can maintain a separate table for field
names. To avoid clashes between fields with identical names in different
structures, it must use qualified names—concatenate either the name of
the structure or something that uniquely maps to the structure, such as
the structure name’s symbol-table index, to the field name. For this
approach, the compiler must somehow link together the individual fields
associated with each structure.

3. Unified Table The compiler can store field names in its principal
symbol table by using qualified names. This decreases the number of
tables, but it means that the principal symbol table must support all of
the fields required for variables and functions, as well as all of the fields
needed for each field-selector in a structure. Of the three options, this is
probably the least attractive.
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The separate table approach has the advantage that any scoping issues—
such as reclaiming the symbol table associated with a structure—fit naturally
into the scope management framework for the principal symbol table. When
the structure can be seen, its internal symbol table is accessible through the
corresponding structure record.

In the latter two schemes, the compiler writer will need to pay careful atten-
tion to scoping issues. For example, if the current scope declares a structure
fee and an enclosing scope already has defined fee, then the scoping mech-
anism must correctly map fee to the structure (and its corresponding field
entries). This may also introduce complications into the creation of qualified
names. If the code contains two definitions of fee, each with a field named
size, then fee.size is not a unique key for either field entry. This prob-
lem can be solved by associating a unique integer, generated from a global
counter, with each structure name.

Linked Tables for Name Resolution in an Object-Oriented
Language

In an object-oriented language, the name scoping rules are governed by the
structure of the data as much as by the structure of the code. This creates
a more complicated set of rules; it also leads to a more complicated set of
symbol tables. Java, for example, needs tables for the code being compiled,
for any external classes that are both known and referenced in the code, and
for the inheritance hierarchy above the class containing the code.

A simple implementation attaches a symbol table to each class, with two
nesting hierarchies: one for lexical scoping inside individual methods and
the other following the inheritance hierarchy for each class. Since a sin-
gle class can serve as superclass to several subclasses, this latter hierarchy
is more complicated than the simple sheaf-of-tables drawing suggests.
However, it is easily managed.

To resolve a name fee when compiling a method m in class C, the compiler
first consults the lexically scoped symbol table for m. If it does not find fee in
this table, it then searches the scopes for the various classes in the inheritance
hierarchy, starting with C and proceeding up the chain of superclasses from
C. If this lookup fails to find fee, the search then checks the global symbol
table for a class or symbol table of that name. The global table must contain
information on both the current package and any packages that have been
used.

Thus, the compiler needs a lexically scoped table for each method, built
while it compiles the methods. It needs a symbol table for each class, with
links upward through the inheritance hierarchy. It needs links to the other
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classes in its package and to a symbol table for package-level variables. It
needs access to the symbol tables for each used class. The lookup process
is more complex, because it must follow these links in the correct order
and examine only names that are visible. However, the basic mechanisms
required to implement and manipulate the tables are already familiar.

5.5.5 Other Uses for Symbol Table Technology

The basic ideas that underlie symbol table implementation have widespread

application, both inside a compiler and in other domains. Hash tables are

used to implement sparse data structures; for example, a sparse array can

be implemented by constructing a hash key from the indices and only stor-  Memo function

ing non-zero values. Runtime systems for Lisp-like languages have reduced  afunction that stores results in a hash table
their storage requirements by having the cons operator hash its arguments—  Undera key builtfromts arguments and uses the
effectively enforcing a rule that textually identical objects share a single hash table to avoid recomputation of pior results
instance in memory. Pure functions, those that always return the same val-

ues on the same input parameters, can use a hash table to produce an

implementation that behaves as a memo function.

SECTION REVIEW

Several tasks inside a compiler require efficient mappings from
noninteger data into a compact set of integers. Symbol table technol-
ogy provides an efficient and effective way to implement many of these
mappings. The classic examples map a textual string, such as the name
of a variable or temporary, into an integer. Key considerations that arise
in symbol table implementation include scalability, space efficiency, and
cost of creation, insertion, deletion, and destruction, both for individual
entries and for new scopes.

This section presented a simple and intuitive approach to implementing
a symbol table: linked sheafs of hash tables. (Section B.4, in Appendix B,
presents several alternative implementation schemes.) In practice, this
simple scheme works well in many applications inside a compiler, rang-
ing from the parser’'s symbol table to tracking information for superlocal
value numbering (see Section 8.5.1).

[
Review Questions
1. Using the "sheaf-of-tables" scheme, what is the complexity of inserting
a new name into the table at the current scope? What is the com-
plexity of looking up a name declared at an arbitrary scope? What
is, in your experience, the maximum lexical-scope nesting level for
programs that you write?
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2. When the compiler initializes a scope, it may need to provide an initial
symbol table size. How might you estimate that initial symbol table
size in the parser? How might you estimate it in subsequent passes of
the compiler?

|

5.6 SUMMARY AND PERSPECTIVE

The choice of an intermediate representation has a major impact on the
design, implementation, speed, and effectiveness of a compiler. None of
the intermediate forms described in this chapter are, definitively, the right
answer for all compilers or all tasks in a given compiler. The designer must
consider the overall goals of a compiler project when selecting an intermedi-
ate form, designing its implementation, and adding auxiliary data structures
such as symbol and label tables.

Contemporary compiler systems use all manner of intermediate represen-
tations, ranging from parse trees and abstract syntax trees (often used in
source-to-source systems) through lower-than-machine-level linear codes
(used, for example, in the Gnu compiler systems). Many compilers use
multiple 1rRs—building a second or third one to perform a particular analysis
or transformation, then modifying the original, and definitive, one to reflect
the result.

B CHAPTER NOTES

The literature on intermediate representations and experience with them is
sparse. This is somewhat surprising because of the major impact that deci-
sions about Irs have on the structure and behavior of a compiler. The classic
IR forms have been described in a number of textbooks [7, 33, 147, 171].
Newer forms like ssa [50, 110, 270] are described in the literature on analy-
sis and optimization. Muchnick provides a modern treatment of the subject
and highlights the use of multiple levels of 1R in a single compiler [270].

The idea of using a hash function to recognize textually identical operations
dates back to Ershov [139]. Its specific application in Lisp systems seems to
appear in the early 1970s [124, 164]; by 1980, it was common enough that
McCarthy mentions it without citation [259].

Cai and Paige introduced multiset discrimination as an alternative to hash-
ing [65]. Their intent was to provide an efficient lookup mechanism with
guaranteed constant time behavior. Note that closure-free regular expres-
sions, described in Section 2.6.3, can be applied to achieve a similar effect.
The work on shrinking the size of R"’s AsT was done by David Schwartz
and Scott Warren.
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In practice, the design and implementation of an IR has an inordinately large
impact on the eventual characteristics of the completed compiler. Large,
complex IRs seem to shape systems in their own image. For example, the
large AsTs used in early 1980s programming environments like R" limited
the size of programs that could be analyzed. The RTL form used in Gcce has
a low level of abstraction. Accordingly, the compiler does a fine job of man-
aging details such as those needed for code generation, but has few, if any,
transformations that require source-like knowledge, such as loop blocking
to improve memory hierarchy behavior.

B EXERCISES

1. A parse tree contains much more information than an abstract syntax Section 5.2
tree.
a. In what circumstances might you need information that is found in
the parse tree but not the abstract syntax tree?
b. What is the relationship between the size of the input program and
its parse tree? Its abstract syntax tree?
c¢. Propose an algorithm to recover a program’s parse tree from its
abstract syntax tree.

2. Write an algorithm to convert an expression tree into a DAG.

3. Show how the following code fragment Section 5.3
if (clil # 0)
then ali] <« b[i] + c[il;
else ali] « blil;
might be represented in an abstract syntax tree, in a control-flow
graph, and in quadruples. Discuss the advantages of each
representation. For what applications would one representation be
preferable to the others?

4. Examine the code fragment shown in Figure 5.13. Draw its CFG and
show its ssa form as a linear code.

5. Show how the expression x - 2 Xy might be translated into an abstract
syntax tree, one-address code, two-address code, and three-address
code.

6. Given a linear list of 1LOC operations, develop an algorithm that finds
the basic blocks in the 1Loc code. Extend your algorithm to build a
control-flow graph to represent the connections between blocks.

7. For the code shown in Figure 5.14, find the basic blocks and construct Section 5.4
the CFG.
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<«
«~— y +2

«~ 0

o o < X

while(x < a)
if (y < x)
X <y +1
y < b x 2

X <y + 2
y < a =+ 2;
W <« x + 2
Z < y Xa
y <y +1

M FIGURE 5.13 Code Fragment for Exercise 4.

L01: add ra.rp = rp L05: add rg,rp = ri
add re,fd = 1o add ra,rp = Iy
add ry.rp = rj add re,rd = ri3
add ra,rp = r4 121 ra = I3
cmp_LT ri,rp = rg add ri3,rp = ria
chr rs — L02,L04 multl ri2,17 = ris

L02: add ra,Mp, = reg jumpl — L03
multl rg,17 = ry L06: add ry.ro = I'ig
jumpl — L03 i2i ro = ryy

L03: add ra,rp = rpp 121 ri = rig
multl rop,17 = ro3 add ri7.rig = rig
Jumpl — L07 add rig.riy = roo

L04: add re,rd = rg multl rq,17 = o]
i21 ra = Iy Jumpl — L03
cmp_LT rg,rq = rip LO7: nop
cbr rio — L05,L06

M FIGURE 5.14 Code Fragment for Exercise 7.

8. Consider the three ¢ procedures shown in Figure 5.15.

a. Suppose a compiler uses a register-to-register memory model.
Which variables in procedures A, B, and C would the compiler be
forced to store in memory? Justify your answers.

b. Suppose a compiler uses a memory-to-memory model. Consider
the execution of the two statements that are in the i f clause of the
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static int max = 0;

int B(int k)
void A(int b, int e) {
{ int x, y;
int a, ¢, d, p;
x = pow(2, k);
a = B(b); _ z 5.
if (b > 100) { Y o
return y;
c=a+b; )
d=c « 5+ e;

}
void C(int =p)

else
C:a*b; {
if (xp > max)
P max = *p;
C(&p);

M FIGURE 5.15 Code for Exercise 8.

if-else construct. If the compiler has two registers available at
that point in the computation, how many loads and stores would the
compiler need to issue in order to load values in registers and store
them back to memory during execution of those two statements?
What if the compiler has three registers available?

9. In FORTRAN, two variables can be forced to begin at the same storage
location with an equivalence statement. For example, the following
statement forces a and b to share storage:

equivalence (a,b)

Can the compiler keep a local variable in a register throughout the
procedure if that variable appears in an equivalence statement? Justify
your answer.

10. Some part of the compiler must be responsible for entering each Section 5.5
identifier into the symbol table.
a. Should the scanner or the parser enter identifiers into the symbol
table? Each has an opportunity to do so.
b. Is there an interaction between this issue, declare-before-use rules,
and disambiguation of subscripts from function calls in a language
with the FORTRAN 77 ambiguity?

11. The compiler must store information in the IR version of the program
that allows it to get back to the symbol table entry for each name.
Among the options open to the compiler writer are pointers to the
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1 procedure main

2 integer a, b, c;

3 procedure fl(w,x);

4 integer a,x,y;

5 call f2(w,x);

6 end;

7 procedure f2(y,z)

8 integer a,y,z;

9 procedure f3(m,n)
10 integer b, m, n;
11 c=axb«mygn;
12 end;

13 call f3(c,z);

14 end;

15 -

16 call fl(a,b);

17 end;

M FIGURE 5.16 Program for Exercise 12.

original character strings and subscripts into the symbol table. Of
course, the clever implementor may discover other options.
What are the advantages and disadvantages of each of these
representations for a name? How would you represent the name?

12. You are writing a compiler for a simple lexically-scoped language.
Consider the example program shown in Figure 5.16.
a. Draw the symbol table and its contents at line 11.
b. What actions are required for symbol table management when the
parser enters a new procedure and when it exits a procedure?

13. The most common implementation technique for a symbol table uses
a hash table, where insertion and deletion are expected to have O(1)
cost.

a. What is the worst-case cost for insertion and for deletion in a hash
table?

b. Suggest an alternative implementation scheme that guarantees
O(1) insertion and deletion.
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The Procedure Abstraction

B CHAPTER OVERVIEW

Procedures play a critical role in the development of software systems.
They provide abstractions for control flow and naming. They provide basic
information hiding. They are the building block on which systems provide
interfaces. They are one of the principal forms of abstraction in Algol-like
languages; object-oriented languages rely on procedures to implement their
methods or code members.

This chapter provides an in-depth look at the implementation of procedures
and procedure calls, from the perspective of a compiler writer. Along the
way, it highlights the implementation similarities and differences between
Algol-like languages and object-oriented languages.

Keywords: Procedure Calls, Parameter Binding, Linkage Conventions

6.1 INTRODUCTION

The procedure is one of the central abstractions in most modern program-
ming languages. Procedures create a controlled execution environment;
each procedure has its own private named storage. Procedures help define
interfaces between system components; cross-component interactions are
typically structured through procedure calls. Finally, procedures are the basic
unit of work for most compilers. A typical compiler processes a collection of
procedures and produces code for them that will link and execute correctly
with other collections of compiled procedures.

This latter feature, often called separate compilation, allows us to build large
software systems. If the compiler needed the entire text of a program for each
compilation, large software systems would be untenable. Imagine recom-
piling a multimillion line application for each editing change made during

Engineering a Compiler. DOI: 10.1016/B978-0-12-088478-0.00006-2
Copyright © 2012, Elsevier Inc. All rights reserved.
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development! Thus, procedures play as critical a role in system design and
engineering as they do in language design and compiler implementation.
This chapter focuses on how compilers implement the procedure abstraction.

Conceptual Roadmap

To translate a source-language program into executable code, the compiler
must map all of the source-language constructs that the program uses into
operations and data structures on the target processor. The compiler needs a
strategy for each of the abstractions supported by the source language. These
strategies include both algorithms and data structures that are embedded into
the executable code. These runtime algorithms and data structures combine
to implement the behavior dictated by the abstraction. These runtime strate-
gies also require support at compile time in the form of algorithms and data
structures that run inside the compiler.

This chapter explains the techniques used to implement procedures and
procedure calls. Specifically, it examines the implementation of control,
of naming, and of the call interface. These abstractions encapsulate many
of the features that make programming languages usable and that enable
construction of large-scale systems.

Overview

The procedure is one of the central abstractions that underlie most modern
programming languages. Procedures create a controlled execution envi-
ronment. Each procedure has its own private named storage. Statements
executed inside the procedure can access the private, or local, variables in
that private storage. A procedure executes when it is invoked, or called, by
Callee another procedure (or the operating system). The callee may return a value
Ina procedure call, we refer to the procedure that - to its caller, in which case the procedure is termed a function. This interface
is invoked as the callee. between procedures lets programmers develop and test parts of a program
Caller in isolation; the separation between procedures provides some insulation

Ina procedure call, we refer to the calling against problems in other procedures'
procedure as the caller.
Procedures play an important role in the way that programmers develop soft-

ware and that compilers translate programs. Three critical abstractions that
procedures provide allow the construction of nontrivial programs.

1. Procedure Call Abstraction Procedural languages support an
abstraction for procedure calls. Each language has a standard
mechanism to invoke a procedure and map a set of arguments, or
parameters, from the caller’s name space to the callee’s name space.
This abstraction typically includes a mechanism to return control to the
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caller and continue execution at the pointimmediately after the call. Linkage convention
Most languages allow a procedure to return one or more values to the anagreement between the compiler and
caller. The use of standard linkage conventions, sometimes referred to operating system that defines the actions taken

. . . to call a procedure or function
as calling sequences, lets the programmer invoke code written and P

compiled by other people and at other times; it lets the application
invoke library routines and system services.

2. Name Space In most languages, each procedure creates a new and
protected name space. The programmer can declare new names, such as  Actual parameter
variables and labels, without concern for the surrounding context. Inside A value or variable passed as a parameter at a call
the procedure, those local declarations take precedence over any earlier ~ Site is anactual parameter of the call.
declarations for the same names. The programmer can create parameters  Formal parameter
for the procedure that allow the caller to map values and variables in the ~ Aname declared as a parameter of some
caller’s name space into formal parameters in the callee’s name space. procedure piis a formal parameter of p.
Because the procedure has a known and separate name space, it can
function correctly and consistently when called from different contexts.
Executing a call instantiates the callee’s name space. The call must
create storage for the objects declared by the callee. This allocation
must be both automatic and efficient—a consequence of calling the
procedure.

3. External Interface Procedures define the critical interfaces among the
parts of large software systems. The linkage convention defines rules
that map names to values and locations, that preserve the caller’s
runtime environment and create the callee’s environment, and that
transfer control from caller to callee and back. It creates a context in
which the programmer can safely invoke code written by other people.
The existence of uniform calling sequences allows the development and
use of libraries and system calls. Without a linkage convention, both the
programmer and the compiler would need detailed knowledge about the
implementation of the callee at each procedure call.

Thus, the procedure is, in many ways, the fundamental abstraction that
underlies Algol-like languages. It is an elaborate facade created colla-
boratively by the compiler and the underlying hardware, with assistance
from the operating system. Procedures create named variables and map
them to virtual addresses; the operating system maps virtual addresses to
physical addresses. Procedures establish rules for visibility of names and
addressability; the hardware typically provides several variants of load and
store operations. Procedures let us decompose large software systems into
components; linkers and loaders knit these together into an executable pro-
gram that the hardware can execute by advancing its program counter and
following branches.
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A WORD ABOUT TIME

This chapter deals with both compile-time and runtime mechanisms. The
distinction between events that occur at compile time and those that
occur at runtime can be confusing. The compiler generates all the code
that executes at runtime. As part of the compilation process, the compiler
analyzes the source code and builds data structures that encode the results
of the analysis. (Recall the discussion of lexically scoped symbol tables in
Section 5.5.3.) The compiler determines much of the storage layout that
the program will use at runtime. It then generates the code needed to
create that layout, to maintain it during execution, and to access both data
objects and code in memory. When the compiled code runs, it accesses
data objects and calls procedures or methods. All of the code is generated
at compile time; all of the accesses occur at runtime.

A large part of the compiler’s task is putting in place the code needed to
realize the various pieces of the procedure abstraction. The compiler must
dictate the layout of memory and encode that layout in the generated pro-
gram. Since it may compile the different components of the program at
different times, without knowing their relationships to one another, this
memory layout and all the conventions that it induces must be standardized
and uniformly applied. The compiler must also use the various interfaces
provided by the operating system, to handle input and output, manage
memory, and communicate with other processes.

This chapter focuses on the procedure as an abstraction and the mechanisms
that the compiler uses to establish its control abstraction, name space, and
interface to the outside world.

6.2 PROCEDURE CALLS

In Algol-like languages (ALLs), procedures have a simple and clear
call/return discipline. A procedure call transfers control from the call site
in the caller to the start of the callee; on exit from the callee, control
returns to the point in the caller that immediately follows its invocation.
If the callee invokes other procedures, they return control in the same way.
Figure 6.1a shows a Pascal program with several nested procedures, while
Figures 6.1b and 6.1c show the program’s call graph and its execution
history, respectively.

The call graph shows the set of potential calls among the procedures.
Executing Main can result in two calls to Fee: one from Foe and another
from Fum. The execution history shows that both calls occur at runtime. Each
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program Main(input, output);
var x,y,z: integer;
procedure Fee;

var x: integer;
begin { Fee }

x :=1;
y i=x*2+1 @

end;

procedure Fie;
var y: real;
procedure Foe;

var z: real;
procedure Fum; (b) Call Graph
var y: real;
begin { Fum }
x :=1.25 % z;

Fee;
writeln(‘x = ’,x)
end;
begin { Foe }
z :=1;
Fee;
Fum
end;
begin { Fie } 1. Maincalls Fie
Foe: 2. Fiecalls Foe
. 3. Foecalls Fee
writeln(“x = ",x) 4. Fee returns to Foe
end; 5. Foe calls Fum
begin { Main } 6. Fumcalls Fee
X 1= 0: 7. Feereturnsto Fum
. 8. Fumreturns to Foe
Fie 9. FoereturnstoFie
end. 10. FiereturnstoMain
(a) Example Pascal Program (c) Execution History

M FIGURE 6.1 Nonrecursive Pascal Program and Its Execution History.

of these calls creates a distinct instance, or activation, of Fee. By the time  Activation

that Fum is called, the first instance of Fee is no longer active. It was created A calltoa procedure activates it; thus, we call an
by the call from Foe (event 3 in the execution history), and destroyed after  Instance ofits execution an activation.

it returned control back to Foe (event 4). When control returns to Fee, from

the call in Fum (event 6), it creates a new activation of Fee. The return from

Fee to Fum destroys that activation.
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(define (fact k)
(cond
[(<=k 1) 1]
[else (x (fact (subl k)) k)1
))

M FIGURE 6.2 Recursive Factorial Program in Scheme.

When the program executes the assignment x :=1 in the first invocation
of Fee, the active procedures are Fee, Foe, Fie, and Main. These all lie
on a path in the call graph from Main to Fee. Similarly, when it executes
the second invocation of Fee, the active procedures (Fee, Fum, Foe, Fie,
and Main) lie on a path from Main to Fee. Pascal’s call and return mecha-
nism ensures that, at any point during execution, the procedure activations
instantiate some rooted path through the call graph.

When the compiler generates code for calls and returns, that code must pre-
serve enough information so that calls and returns operate correctly. Thus,
when Foe calls Fum, the code must record the address in Foe to which Fum
Diverge should return control. Fum may diverge, or not return, due to a runtime error,
A computation that does not terminate normally  an infinite loop, or a call to another procedure that does not return. Still,
Is said to diverge. the call mechanism must preserve enough information to allow execution to

resume in Foe if Fum returns.

Return address The call and return behavior of ALLs can be modelled with a stack. As

When p calls g, the address in p where execution Fie calls Foe, it pushes the return address in Fie onto the stack. When

should continue after p's return is called its Foe returns, it pops that address off the stack and jumps to the address.

return addess. If all procedures use the same stack, popping a return address exposes the
next one.

The stack mechanism handles recursion as well. The call mechanism, in
effect, unrolls the cyclic path through the call graph and creates a distinct
activation for each call to a procedure. As long as the recursion terminates,
this path will be finite and the stack of return addresses will correctly capture
the program’s behavior.

To make this concrete, consider the recursive factorial computation shown
in Figure 6.2. When invoked to compute (fact 5), it generates a series of
recursive calls: (fact 5) calls (fact 4) calls (fact 3) calls (fact 2)
calls (fact 1). At that point, the cond statement executes the clause for
(<= k 1), terminating the recursion. The recursion unwinds in the reverse
order, with the call to (fact 1) returning the value 1 to (fact 2). It, in
turn, returns the value 2 to (fact 3), which returns 6 to (fact 4). Finally,
(fact 4) returns 24 to (fact 5), which multiplies 24 times 5 to return the
answer 120. The recursive program exhibits last-in, first-out behavior, so the
stack mechanism correctly tracks all of the return addresses.
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Control Flow in Object-Oriented Languages

From the perspective of procedure calls and returns, object-oriented lan-
guages (ooLs) are similar to ALLs. The primary differences between pro-
cedure calls in an ooL and an ALL lie in the mechanism used to name the
callee and in the mechanisms used to locate the callee at runtime.

More Complex Control Flow

Following Scheme, many programming languages allow a program to

encapsulate a procedure and its runtime context into an object called a

closure. When the closure is invoked, the procedure executes in the encapsu-  Closure

lated runtime context. A simple stack is inadequate to implement this control ~ aprocedure and the runtime context that defines
abstraction. Instead, the control information must be saved in some more It freevariables
general structure that can represent the more complex control-flow rela-

tionship. Similar problems arise if the language allows references to local

variables that outlast a procedure’s activation.

SECTION REVIEW

In Algol-like languages, procedures are invoked with a call and they
terminate in a return, unless the procedure diverges. To translate

calls and returns, the compiler must arrange for the code to record, at
each call, the appropriate return address and to use, at each return, the
return address that corresponds to the correct call. Using a stack to hold
return addresses correctly models the last-in, first-out behavior of return
addresses.

One key data structure used to analyze caller—callee relationships is the
call graph. It represents the set of calls between procedures, with an
edge from Foe to Fum for each call site in Foe that invokes Fum. Thus, it
captures the static relationship between callers and callees defined

by the source code. It does not capture the dynamic, or runtime,
relationship between procedures; for example, it cannot tell how many
times the recursive factorial program in Figure 6.2 calls itself.

|

Review Questions

1. Many programming languages include a direct transfer of control,
often called a goto. Compare and contrast a procedure call and a
goto.

2. Consider the factorial program shown in Figure 6.2. Write down the
execution history of a call to (fact 5). Explicitly match up the calls
and returns. Show the value of k and of the return value.

|
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6.3 NAME SPACES

In most procedural languages, a complete program will contain multiple
Scope name spaces. Each name space, or scope, maps a set of names to a set of
Inan Algol-like language, scopereferstoaname  values and procedures over some set of statements in the code. This range
space. The termis often used in discussions of the  pioht be the whole program, some collection of procedures, a single proce-
visibility of names. dure, or a small set of statements. The scope may inherit some names from
other scopes. Inside a scope, the programmer can create names that are inac-
cessible outside the scope. Creating a name, fee, inside a scope can obscure
definitions of fee in surrounding scopes, in effect making them inaccessible
inside the scope. Thus, scope rules give the programmer control over access
to information.

6.3.1 Name Spaces of Algol-like Languages

Most programming languages inherit many of the conventions that were
defined for Algol 60. This is particularly true of the rules that govern the
visibility of names. This section explores the notion of naming that prevails
in ALLs, with particular emphasis on the hierarchical scope rules that apply
in such languages.

Nested Lexical Scopes

Lexical scope Most ALLs allow the programmer to nest scopes inside one another. The
Scopes that nest n the order that they are limits of a scope are marked by specific terminal symbols in the program-
en§ountered in the program are often called ming language. Typically, each new procedure defines a scope that covers
Jexicalscopes. its entire definition. Pascal demarcated scopes with a begin at the start and
In lexical scoping, a name refers to the definition an end at the finish. C uses curly braces, { and }, to begin and end a block;

thatis Iexically closest to its use—that iS, the each block defines a new scope.
definition in the closest surrounding scope.
Pascal popularized nested procedures. Each procedure defines a new scope,

and the programmer can declare new variables and procedures in each scope.
It uses the most common scoping discipline, called lexical scoping. The
general principle behind lexical scoping is simple:

In a given scope, each name refers to its lexically closest
declaration.

Thus, if s is used in the current scope, it refers to the s declared in the current
scope, if one exists. If not, it refers to the declaration of s that occurs in the
closest enclosing scope. The outermost scope contains global variables.

To make lexical scoping concrete, consider the Pascal program shown in
Figure 6.3. It contains five distinct scopes, one corresponding to the program
Main and one for each of the procedures Fee, Fie, Foe, and Fum. Each proce-
dure declares some set of variables drawn from the set of names x, y, and z.
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var xi,y1,zi1: integer; Scope X y z
procedure Feer; Main (1,00 (1,4) (1,8)
var xp: integer; Fee 2,00 (1,4 (1,8)
begin { Feey } Fie (1,00 (20) (1,8)
Xz = 1y Foe  (1,0) (2,0) (3,0)
y1 = xp x 2 +1 Fum  (1,0) (4,0) (3,0)
end;
procedure Fiep; (b) Static Coordinates

var yo: real;
procedure Foey;
var zz: real;
procedure Fumy
var yaq: real;
begin { Fums }
x1 = 1.25 x z3;
Feet;
writeln(*x = ’,x7)
end;
begin { Foey }

73 = 1; (c) Nesting Relationships

Feey;
Fums
end;
begin { Fiey }
Foep;
writeln(‘x = *,x1)
end;
begin { Maing }
x1 = 0;
Fiep
end.

Main

(a) Pascal Program (d) Calling Relationships

M FIGURE 6.3 Nested Lexical Scopes in Pascal.

The figure shows each name with a subscript that indicates its level number.
Names declared in a procedure always have a level that is one more than
the level of the procedure name. Thus, if Main has level 0, as shown, names
declared directly in Main, such as x, y, z, Fee, and Fie all have level 1.

To represent names in a lexically scoped language, the compiler can use the
static coordinate for each name. The static coordinate is a pair (/,0), where

Static coordinate

Foraname x declared in scope s, its static
coordinate is a pair (/,0) where /is the lexical
nesting level of s and o is the offset where X is
stored in the scope’s data area.
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DYNAMIC SCOPING

The alternative to lexical scoping is dynamic scoping. The distinction
between lexical and dynamic scoping only matters when a procedure
refers to a variable that is declared outside the procedure’s own scope,
often called a free variable.

With lexical scoping, the rule is simple and consistent: a free variable is
bound to the declaration for its name that is lexically closest to the use. If
the compiler starts in the scope containing the use, and checks successive
surrounding scopes, the variable is bound to the first declaration that
it finds. The declaration always comes from a scope that encloses the
reference.

With dynamic scoping, the rule is equally simple: a free variable is bound
to the variable by that name that was most recently created at runtime.
Thus, when execution encounters a free variable, it binds that free variable
to the most recent instance of that name. Early implementations created a
runtime stack of names, on which every name was pushed as its declaration
was encountered. To bind a free variable, the running code searched the
name stack from its top downward until a variable with the right name was
found. Later implementations are more efficient.

While many early Lisp systems used dynamic scoping, lexical scoping has
become the dominant choice. Dynamic scoping is easy to implement in an
interpreter and somewhat harder to implement efficiently in a compiler.
It can create bugs that are difficult to detect and hard to understand.
Dynamic scoping still appears in some languages; for example, Common
Lisp still allows the program to specify dynamic scoping.

[ is the name’s lexical nesting level and o is the its offset in the data area
for level [. To obtain /, the front end uses a lexically scoped symbol table,
as described in Section 5.5.3. The offset, o, should be stored with the name
and its level in the symbol table. (Offsets can be assigned when declarations
are processed during context-sensitive analysis.) The table on the right side
of Figure 6.3 shows the static coordinate for each variable name in each
procedure.

The second part of name translation occurs during code generation. The
compiler must use the static coordinate to locate the value at runtime. Given
a coordinate (/,0), the code generator must emit code that translates / into
the runtime address of the appropriate data area. Then, it can use the offset o
to compute the address for the variable corresponding to (/,0). Section 6.4.3
describes two different ways to accomplish this task.
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Scope Rules across Various Languages

Programming language scope rules vary idiosyncratically from language to
language. The compiler writer must understand the specific rules of a source
language and must adapt the general translation schemes to work with these
specific rules. Most ALLs have similar scope rules. Consider the rules for the
languages FORTRAN, ¢, and Scheme:

m  FORTRAN has a simple name space. A FORTRAN program creates a single
global scope, along with a local scope for each procedure or function. Separate compilation makes it hard for FORTRAN
Global variables are grouped together in a “common block™; each compilers to delte(t'dilfferehtde(larationsfora'
common block consists of a name and a list of variables. The global ;:)En?:nt;:gi g:}';qt'on:t)fl'(l)ej(' rTeth:ért\:sc?an”er
scope holds the names of procedures and common blocks. Global (block,offset) pairs to produce correct behavior.
names have lifetimes that match the lifetime of the program. A
procedure’s scope holds parameter names, local variables, and labels.
Local names obscure global names if they conflict. Names in the local
scope have, by default, lifetimes that match an invocation of the
procedure, The programmer can give a local variable the lifetime of a
global variable by listing it in a save statement.

m ¢ has more complex rules. A ¢ program has a global scope for
procedure names and global variables. Each procedure has a local scope
for variables, parameters, and labels. The language definition does not
allow nested procedures, although some compilers have implemented
this feature as an extension. Procedures can contain blocks (set off with
left and right braces) that create separate local scopes; blocks can be
nested. Programmers often use a block-level scope to create temporary
storage for code generated by a preprocessor macro or to create a local
variable whose scope is the body of a loop.
c introduces another scope: the file-level scope. This scope includes
names declared as static that not enclosed in a procedure. Thus,

static procedures and functions are in the file-level scope, as are any Static name

static variables declared at the outermost level in the file. Without Avariable declared as static retains its value
the static attribute, these names would be global variables. Names in across invocations of its defining procedure.
the file-level scope are visible to any procedure in the file, but are not Variables that are not static are called automatic.
visible outside the file. Both variables and procedures can be declared

static.

m  Scheme has a simple set of scope rules. Almost all objects in Scheme
reside in a single global space. Objects can be data or executable
expressions. System-provided functions, such as cons, live alongside
user-written code and data items. Code, which consists of an executable
expression, can create private objects by using a 1et expression.
Nesting 1et expressions inside one another can create nested lexical
scopes of arbitrary depth.
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6.3.2 Runtime Structures to Support Algol-like
Languages

To implement the twin abstractions of procedure calls and scoped name
spaces, the translation must establish a set of runtime structures. The key
Activation record data structure involved in both control and naming is the activation record
aregion of storage set aside to hold control (AR), a private block of memory associated with a specific invocation of a

information and data storage associated with a specific procedure. In principle, every procedure call gives rise to a new AR.
single instance of a single procedure

m  The compiler must arrange for each call to store the return address
where the callee can find it. The return address goes into the AR.

m  The compiler must map the actual parameters at the call site into the
formal parameter names by which they are known in the callee. To do
so, it stores ordered parameter information in the AR.

m The compiler must create storage space for variables declared in the
callee’s local scope. Since these values have lifetimes that match the
lifetime of the return address, it is convenient to store them in the AR.

m  The callee needs other information to connect it to the surrounding
program, and to allow it to interact safely with other procedures. The
compiler arranges to store that information in the callee’s AR.

Since each call creates a new AR, when multiple instances of a procedure
are active, each has its own AR. Thus, recursion gives rise to multiple ARs,
each of which holds the local state for a different invocation of the recursive
procedure.

Figure 6.4 shows how the contents of an AR might be laid out. The entire AR

Activation record pointer is addressed through an activation record pointer (ARP), with various fields
To locate the current AR the compilerarrangesto  in the AR found at positive and negative offsets from the ARP. The ARs in
keep a pointer to the AR, the activation record Figure 6.4 have a number of fields.

pointer, in a designated register.

m  The parameter area holds actual parameters from the call site, in an
order that corresponds to their order of appearance at the call.

m The register save area contains enough space to hold registers that the
procedure must preserve due to procedure calls.

m  The return-value slot provides space to communicate data from the
callee back to the caller, if needed.

m  The return-address slot holds the runtime address where execution
should resume when the callee terminates.

m  The “addressability” slot holds information used to allow the callee to
access variables in surrounding lexical scopes (not necessarily the
caller).

m  The slot at the callee’s ARP stores the caller’s ArRp. The callee needs this
pointer so that it can restore the caller’s environment when it terminates.

m  The local data area holds variables declared in the callee’s local scope.
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Local-Data Area

ARP+n ; L

Local-Data Area Caller’s ARP

Addressability
Caller’s ARP
= Return Address
Addressability

Return Value

Return Address

Return Value Register-Save Area

Register-Save Area Parameters
Parameters Caller's AR
ARP-m Callee’s AR

M FIGURE 6.4 Typical Activation Records.

For the sake of efficiency, some of the information shown in Figure 6.4 may
be kept in dedicated registers.

Local Storage

The AR for an invocation of procedure g holds the local data and state infor-
mation for that invocation. Each separate call to g generates a separate AR.
All data in the AR is accessed through the ARP. Because procedures typically
access their AR frequently, most compilers dedicate a hardware register to
hold the ARP of the current procedure. In 1Loc, we refer to this dedicated
register as rapp.

The arp always points to a designated location in the AR. The central part
of the AR has a static layout; all the fields have known fixed lengths. This
ensures that the compiled code can access those items at fixed offsets from
the ArP. The ends of the AR are reserved for storage areas whose sizes
may change from one invocation to another; typically one holds parameter
storage while the other holds local data.

Reserving Space for Local Data

Each local data item may need space in the AR. The compiler should assign
each such item an appropriately sized area and record the current lexical
level and its offset from the ARP in the symbol table. This pair, the lexical
level and offset, become the item’s static coordinate. Then, the variable can
be accessed using an operation like 10adA0, with rarp and the offset as its
arguments, to provide efficient access to local variables.



282 CHAPTER 6 The Procedure Abstraction

The compiler may not know the sizes of some local variables at compile
time. For example, the program might read the size of an array from external
media or determine it from work done in an earlier phase of the computation.
For such variables, the compiler can leave space in the local data area for a
pointer to the actual data or to a descriptor for an array (see Section 7.5.3 on
page 362). The compiler arranges to allocate the actual storage elsewhere,
at runtime, and to fill the reserved slot with the address of the dynamically
allocated memory. In this case, the static coordinate leads the compiler to
the pointer’s location, and the actual access either uses the pointer directly
or uses the pointer to calculate an appropriate address in the variable-length
data area.

Initializing Variables

If the source language allows the program to specify an initial value for
a variable, the compiler must arrange for that initialization to occur. If the
variable is allocated statically—that is, it has a lifetime that is independent
of any procedure—and the initial value is known at compile time, the data
can be inserted directly into the appropriate locations by the loader. (Static
variables are usually stored outside all aArs. Having one instance of such
a variable provides the needed semantics—a single value preserved across
all the calls. Using a separate static data area—either one per procedure or
one for the entire program—Ilets the compiler use the initialization features
commonly found in loaders.)

Local variables, on the other hand, must be initialized at runtime. Because
a procedure may be invoked multiple times, the only feasible way to set
initial values is to generate instructions that store the necessary values to
the appropriate locations. In effect, these initializations are assignments that
execute before the procedure’s first statement, each time it is invoked.

Space for Saved Register Values

When p calls g, one of them must save the register values that p needs
after the call. It may be necessary to save all the register values; on the
other hand, a subset may suffice. On return to p, these saved values must
be restored. Since each activation of p stores a distinct set of values, it
makes sense to store these saved registers in the AR of either p or ¢, or both.
If the callee saves a register, its value is stored in the callee’s register save
area. Similarly, if the caller saves a register, its value is stored in the caller’s
register save area. For a caller p, only one call inside p can be active at a
time. Thus, a single register save area in p’s AR suffices for all the calls that
p can make.
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Allocating Activation Records

When p calls g at runtime, the code that implements the call must allocate an
AR for g and initialize it with the appropriate values. If all the fields shown in
Figure 6.4 are stored in memory, then the AR must be available to the caller,
D, so that it can store the actual parameters, return address, caller’s ArRp, and
addressability information. This forces allocation of g’s AR into p, where
the size of its local data area may not be known. On the other hand, if these
values are passed in registers, actual allocation of the AR can be performed in
the callee, g. This lets g allocate the AR, including any space required for the
local data area. After allocation, it may store into its AR some of the values
passed in registers.

The compiler writer has several options for allocating activation records.
This choice affects both the cost of procedure calls and the cost of imple-
menting advanced language features, such as building a closure. It also
affects the total amount of memory needed for activation records.

Stack Allocation of Activation Records

In many cases, the contents of an AR are only of interest during the life-
time of the procedure whose activation causes the AR’s creation. In short,
most variables cannot outlive the procedure that creates them, and most pro-
cedure activations cannot outlive their callers. With these restrictions, calls
and returns are balanced; they follow a last-in, first-out (L1FO) discipline. A
call from p to g eventually returns, and any returns that occur between the
call from p to g and the return from ¢ to p must result from calls made (either
directly or indirectly) by ¢. In this case, the activation records also follow the
LIFO ordering; thus, they can be allocated on a stack. Pascal, ¢, and Java are
typically implemented with stack-allocated ARs.

Keeping activation records on a stack has several advantages. Allocation
and deallocation are inexpensive; each requires one arithmetic operation
on the value that marks the stack’s top. The caller can begin the process
of setting up the callee’s AR. It can allocate all the space up to the local
data area. The callee can extend the AR to include the local data area by
incrementing the top-of-stack (Tos) pointer. It can use the same mecha-
nism to extend the current AR incrementally to hold variable-size objects,
as shown in Figure 6.5. Here, the callee has copied the TOS pointer into
the local data area slot for A and then incremented the TOS pointer by
the size of A. Finally, with stack-allocated ARrs, a debugger can walk the
stack from its top to its base to produce a snapshot of the currently active
procedures.
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New
TOS
Space for A
Old .........................................
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Local-Data Area

. PointertoA 1

ARP Ca//el’ ARP >

M FIGURE 6.5 Stack Allocation of a Dynamically Sized Array.

Heap Allocation of Activation Records

If a procedure can outlive its caller, the stack discipline for allocating ARs
breaks down. Similarly, if a procedure can return an object, such as a closure,
that includes, explicitly or implicitly, references to its local variables, stack
allocation is inappropriate because it will leave behind dangling pointers.
In these situations, ARs can be kept in heap storage (see Section 6.6).
Implementations of Scheme and ML typically use heap-allocated ARs.

A modern memory allocator can keep the cost of heap allocation low. With
heap-allocated ARs, variable-size objects can be allocated as separate objects
on the heap. If heap objects need explicit deallocation, then the code for pro-
cedure return must free the AR and its variable-size extensions. With implicit
deallocation (see Section 6.6.2), the garbage collector frees them when they
are no longer useful.

Static Allocation of Activation Records

If a procedure g calls no other procedures, then ¢ can never have multi-
Leaf procedure ple active invocations. We call g a leaf procedure since it terminates a path
aprocedure that contains no calls through a graph of the possible procedure calls. The compiler can statically

allocate activation records for leaf procedures. This eliminates the runtime

costs of AR allocation. If the calling convention requires the caller to save its

own registers, then ¢g’s AR needs no register save area.

If the language does not allow closures, the compiler can do better than
allocating a static AR for each leaf procedure. At any point during execution,
only one leaf procedure can be active. (To have two such procedures active,
the first one would need to call another procedure, so it would not be a leaf.)
Thus, the compiler can allocate a single static AR for use by all of the leaf
procedures. The static AR must be large enough to accommodate any of the
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program’s leaf procedures. The static variables declared in any of the leaf
procedures can be laid out together in that single AR. Using a single static
AR for leaf procedures reduces the space overhead of separate static ARs for
each leaf procedure.

Coalescing Activation Records

If the compiler discovers a set of procedures that are always invoked in
a fixed sequence, it may be able to combine their activation records. For
example, if a call from p to g always results in calls to r and s, the compiler
may find it profitable to allocate the ARs for ¢, r, and s at the same time.
Combining ARs can save on the costs of allocation; the benefits will vary
directly with allocation costs. In practice, this optimization is limited by sep-
arate compilation and the use of function-valued parameters. Both limit the
compiler’s ability to determine the calling relationships that actually occur
at runtime.

6.3.3 Name Spaces of Object-Oriented Languages

Much has been written about object-oriented design, object-oriented pro-
gramming, and object-oriented languages. Languages such as Simula,
Smalltalk, c++, and Java all support object-oriented programming. Many
other languages have extensions that provide them with features to support
object-oriented programming. Unfortunately, the term object-oriented has
been given so many different meanings and implementations that it has come
to signify a wide range of language features and programming paradigms.

As we shall see, not all ooLs can be compiled, in the traditional sense of

a translation that finalizes all of the details about the executable program.

Features of some OOLs create name spaces that cannot be understood until

runtime. Implementations of these languages rely on runtime mechanisms

that run from interpretation to runtime compilation (so-called just-in-time  Just-in-time compiler

compilers or 11Ts). Because interpreters and JITs use many of the same struc-  Schemes that perform some of the tasks of a
tures as a compiler, we describe the problem as it might be implemented in  traditional compilerat runtime are often called
a traditional compiler. just-in-time compilers or JITs.

InaJIT, compile time becomes part of runtime,
50 JITs place an emphasis on compile-time
efficiency.

From the compiler’s perspective, OOLs reorganize the program’s name space.
Most ooLs retain the procedure-oriented lexical scoping conventions of
an ALL for use within procedural code. They augment this classic naming
scheme with a second set of conventions for naming, one organized around
the layout of data—specifically, the definitions of objects. This data-centric
naming discipline leads to a second hierarchy of scopes and a second mecha-
nism for resolving names—that is, for mapping a source-language name into
a runtime address so that the compiled code can access the data associated
with that name.
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TERMINOLOGY FOR OBJECT-ORIENTED LANGUAGES

The diversity of object-oriented languages has led to some ambiguity in
the terms that we use to discuss them. To make the discussion in this
chapter concrete, we will use the following terms:

1. Object An object is an abstraction with one or more members. Those
members can be data items, code that manipulates those data items,
or other objects. An object with code members is a class. Each object
has internal state—data whose lifetimes match the object’s lifetime.

2. Class A class is a collection of objects with the same abstract structure

and characteristics. A class defines the set of data members in each

instance of the class and defines the code members (methods) that are
local to that class. Some methods are public, or externally visible,
others are private, or invisible outside the class.

Inheritance Inheritance refers to a relationship among classes that

defines a partial order on the name scopes of classes. Each class may

have a superclass from which it inherits both code and data members.

If ais the superclass of b, b is a subclass of a. Some languages allow a

class to have multiple superclasses.

4. Receiver Methods are invoked relative to some object, called the
method'’s receiver. The receiver is known by a designated name, such
as this orself,inside the method.

&

The complexity and the power of an ooL arise, in large part, from the
organizational possibilities presented by its multiple name spaces.

Inheritance imposes an ancestor relation on the classes in an application.
The syntax and terminology used to specify Each class has, by declaration, one or more parent classes, or superclasses.
subclasses varies between languages. In Java, Inheritance changes both the name space of the application and the mapping
a subclass extends its superclass, while in (++, a . . . .

o " of method names to implementations. If « is a superclass of g, then g is

subclass is derived from its superclass. . .

a subclass of o and any method defined in o must operate correctly on an

object of class B, if it is visible in B. The converse is not true; a method

declared in class 8 cannot be applied to an object of its superclass «, as the

method from 8 may need fields present in an object of class S that are absent

from an object of class «.

Visibility

When a method runs, it can reference names defined in multiple scope hier-
archies. The method is a procedure, with its own name space defined by the
set of lexical scopes in which it is declared; the method can access names in
those scopes using the familiar conventions defined for ALLs. The method
was invoked relative to some receiver; it can access that object’s own mem-
bers. The method is defined in the receiver’s class. The method can access
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the members of that class and, by inheritance, of its superclasses. Finally,
the program creates some global name space and executes in it. The running
method can access any names that are contained in that global name space.

To make these issues concrete, consider the abstracted example shown in
Figure 6.6. It defines a class, Point, of objects with integer fields x and y
and methods draw and move. ColorPoint is a subclass of Point that extends
Point with an additional field ¢ of type Color. It uses Point’s method for
move, overrides its method for draw and defines a new method test that
performs some computation and then invokes draw. Finally, class C defines
local fields and methods and uses ColorPoint.

Now, consider the names that are visible inside method m of class C. Method
m maps x and y to their declarations in C. It expressly references the class
names Point and ColorPoint. The assignment y =p.x takes its right-hand
side from the field x in the object p, which p has by inheritance from class
Point. The left-hand side refers to m’s local variable y. The call to draw
maps to the method defined in ColorPoint. Thus, m refers to definitions
from all three classes in the example.

class Point {
public int x, y;
public void draw() {...};
public void move() {...};

1
class ColorPoint extends Point { // inherits x, y, & move()
Color c; // local field of ColorPoint
public void draw() {...}; // hide Point’s draw()
public void test() {...; draw();}; // local method
}
class C {
int x, y; // local fields
public void m() { // local method
int y; // Tlocal variable of m
Point p = new ColorPoint(); // uses ColorPoint and, by
y =p.x // inheritance, Point
p.draw()
}
1

M FIGURE 6.6 Definitionsfor PointandColorPoint.



288 CHAPTER 6 The Procedure Abstraction

To translate this example, the compiler must track the hierarchy of names
and scopes established both by the scope rules inside methods and classes
and by the hierarchy of classes and superclasses established by extends.
Name resolution in this environment depends on both the details of the code
definitions and the class structure of the data definitions. To translate an 0oL,
the compiler needs to model both the name space of the code and the name
spaces associated with the class hierarchy. The complexity of that model
depends on details of the specific OOL.

To add a final complication, some OOLs provide attributes for individual
In Java, pubT1c makes a name visible names that change their visibility. For example, a Java name can have the
everywhere while private makes the name  atributes pub1ic or private. Similarly, some 0OLs provide a mechanism to
visible only within its own class. reference names obscured by nesting. In c++, the : : operator allows the code
to name a scope while in Java the programmer can use a fully qualified name.

Naming in the Class Hierarchy

The class hierarchy defines a set of nested name scopes, just as a set of nested
procedures and blocks does in an ALL. In an ALL, lexical position defines the
relationship between those name scopes—if procedure d is declared inside
procedure c, then d’s name space is nested inside ¢’s name space. In an 0OL,
the class declarations can be lexically disjoint and the subclass relation is
specified by explicit declarations.

Direct superdass To find the declaration of a name, the compiler must search the lexical hier-

If dlass o extends B, then B is o' direct archy, the class hierarchy, and the global name space. For a name x in a

superclass. If B has asuperdass y, then y is, by method m, the compiler first searches the lexical scopes that surround the

t(ansitivity,asuperclass ofr, butitisnoter's reference in m. If that lookup fails, it searches the class hierarchy for the

direct superclass. . . , ,
class that contains m. Conceptually, it searches m’s declared class, then m’s
direct superclass, then that class’ direct superclass, and so on until it finds
the name or exhausts the class hierarchy. If the name is not found in either
the lexical hierarchy or the class hierarchy, the compiler searches the global
name space.

To support the more complex naming environment of an 0oL, the compiler
writer uses the same basic tools used with an ALL: a linked set of symbol
tables (see Section 5.5.3). In an ooL, the compiler simply has more tables
than in an ALL and it must use those tables in a way that reflects the naming
environment. It can link the tables together in the appropriate order, or it can
keep the three kinds of tables separate and search them in the appropriate
order.

The major complication that arises with some OOLs derives not from the
presence of a class hierarchy, but rather from when that hierarchy is defined.
If the ooL requires that class definitions be present at compile time and that
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TRANSLATING JAVA

The Java programming language was designed to be portable, to be
secure, and to have a compact representation for transmission over net-
works. These design goals led directly to a two-stage translation scheme
for Java that is followed in almost all Java implementations.

Java code is first compiled, in the traditional sense, from Java source into
an IR called Java bytecode. Java bytecode is compact. Java bytecode forms
the instruction set for the Java Virtual Machine (JVM). The JVM has been
implemented with an interpreter that can be compiled on almost any
target platform, providing portability. Because Java code executes inside
the JVM, the JVM can control interactions between the Java code and the
system, limiting the ability of a Java program to gain illicit access to system
resources—a strong security feature.

This design implies a specific translation scheme. Java codeis first compiled
into Java bytecode. The bytecode is then interpreted by the JVM. Because
interpretation adds runtime overhead, many JVM implementations include
a just-in-time compiler that translates heavily used bytecode sequences
into native code for the underlying hardware. As a result, Java translation
is a combination of compilation and interpretation.

class definitions not change after compile time, then name resolution inside

methods can be performed at compile time. We say that such a language

has a closed class structure. On the other hand, if the language allows the  Closed class structure

running program to change its class structure, either by importing classes as  Ifthe dlass structure of an application is fixed at
in Java or by editing classes as in Smalltalk, then the language has an open ~ ©OMPiletime, the 0oL has adlosed hierarchy.

class structure. Open dlass structure
If an application can change its class structure at
Given a method m, the compiler can map a name that appears in m to either  yuntime, it has an open hierarchy.

a declaration in some nested scope of m, or to the class definition that con-
tains m. If the name is declared in a superclass, the compiler’s ability to
determine which superclass declares the name depends on whether the class
structure is open or closed. With a closed class structure, the compiler has  ¢++ has a dosed dlass structure. Any functions,

the complete class hierarchy, so it can resolve all names back to their dec-  other than virtual functions, can be resolved at
compile time. Virtual functions require runtime

larations and, with appropriate runtime structures to support naming, can i
resolution.

generate code to access any name. With an open class structure, the com-
piler may not know the class structure until runtime. Such languages require
runtime mechanisms to resolve names in the class hierarchy; that require-
ment, in turn, typically leads to implementations that rely on interpretation
or runtime compilation. Similar situations can arise from explicit or implicit
conversions in a language with a closed class structure; for example virtual
functions in C++ may require runtime support.
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6.3.4 Runtime Structures to Support Object-Oriented
Languages

Just as Algol-like languages need runtime structures to support their lexical
name spaces, so too do object-oriented languages need runtime structures to
support both their lexical hierarchy and their class hierarchy. Some of those
structures are identical to the ones found in an ALL. For example, the control
information for methods, as well as storage for method-local names, is stored
in ARs. Other structures are designed to address specific problems introduced
by the ooL. For example, object lifetimes need not match the invocation of
any particular method, so their persistent state cannot be stored in some AR.
Thus, each object needs its own object record (0OR) to hold its state. The Ors
of classes instantiate the inheritance hierarchy; they play a critical role in
translation and execution.

The amount of runtime support that an ooL needs depends heavily on fea-
tures of the ooL. To explain the range of possibilities, we will begin with the
structures that might be generated for the definitions in Figure 6.6, assum-
ing a language with single inheritance and an open class structure. From that
base case, we will explore the simplifications and optimizations that a closed
class structure allows.

Figure 6.7 shows the runtime structures that might result from instanti-
ating three objects using the definitions from Figure 6.6. SimplePoint
instantiates Point, while both LeftCorner and RightCorner instantiate
ColorPoint. Each of object has its own OR, as do the classes Point and

N
class H*f class HJ c]assJ —
methods = methods = methods =
superclass| o— superclass| o— superclass| e—o
classmethods| e draw classmethods| e draw class methods| e—=
ColorPoint [ MOVe Point move class
test
class| e J class HJ class HJ
methods| ® draw methods| draw methods| draw
x| 1022 move x| 84 move x| 278 move
y| 14 y| 364 test y| 16 test
SimplePoint c[blue c| red

LeftCorner RightCorner

M FIGURE 6.7 Runtime Structures for the ColorPoint Example.
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ColorPoint. For completeness, the diagram shows an ORr for class class.
Depending on the language, an implementation may avoid representing
some of these fields, method vectors, and pointers.

The or for a simple object, such as LeftCorner, contains a pointer to the
class that defined LeftCorner, a pointer to the method vector for that class,
and space for its fields, x, y, and c, Notice that the inherited fields in a
ColorPoint and in its method vector have the same offset that they would
in the base class Point. The or for ColorPoint literally extends the OrR
for Point. The resulting consistency allows a superclass method such as
Point.move to operate correctly on a subclass object, such as LeftCorner.

The or for a class contains a pointer to its class, class, a pointer to the
method vector for class, and its local fields which include superclass
and class methods. In the figure, all method vectors are drawn as complete
method vectors—that is, they include all of the methods for the class, both
local and inherited. The superclass field records the inheritance hierarchy,
which may be necessary in an open class structure. The cTass methods field
points to the method vector used members of the class.

To avoid a confusing tangle of lines in the figure, we have simplified the
method vectors in several ways. The drawing shows separate method vectors
rather than pointers to a shared copy of the class methods vectors. The copies
are drawn in gray. Class class has null pointers for both its methods and
its class methods fields. In a real implementation, these would likely have
some methods, which would, in turn, cause non-null pointers in the methods
field of both Point and ColorPoint.

Method Invocation

How does the compiler generate code to invoke a method such as draw?
Methods are always invoked relative to an object, say RightCorner, as
receiver. For the invocation to be legal, RightCorner must be visible at
the point of the call, so the compiler can discover how to find RightCorner
with a symbol-table lookup. The compiler first looks in the method’s lexical
hierarchy, then in the class hierarchy, and, finally, in the global scope. That
lookup provides enough information to let the compiler emit code to obtain
a pointer to RightCorner’s OR.

Once the compiler has emitted code to obtain the OR pointer, it locates the
method vector pointer at offset 4 in the OR pointer. It uses draw’s offset,
which is O relative to the method vector pointer, to obtain a pointer to the
desired implementation of draw. It uses that code pointer in a standard proce-
dure call, with one twist—it passes RightCorner’s OR pointer as the implicit
first parameter to draw. Because it located draw from RightCorner’s OR,
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which contains a pointer to ColorPoint’s class methods vector, the code
sequence locates the proper implementation of draw. If the invocation had
been SimplePoint.draw, the same process would have found Point’s
method vector pointer and called Point.draw.

The example assumes that each class has a complete method vector. Thus,
the slot for move in ColorPoint’s method vector points to Point.move
while the slot for draw points to ColorPoint.draw. This scheme pro-
duces the desired result—an object of class x invokes the implementation
of a method that is visible inside the definition for class x. The alternative
scheme would represent only ColorPoint’s locally defined methods in its
class method vector, and would locate an inherited method by chasing Ors
up the superclass chain in a manner analogous to access links for lexical
scoping and ARs.

Object-Record Layout
One subtle point in the example is that an implementation must maintain

"Implementation” might be a compiler, an consistent offsets, by name, up and down the superclass hierarchy. Fields,
interpreter, or aJIT. The layout problem is the such as x and y, must appear at the same offset in an oRr of class Point and
same.

ColorPoint for a method such as move to operate correctly on ors of either
its class or its superclasses. For the same reason, methods must appear at the
same offsets in the method vectors of related classes.

Without inheritance, the compiler can assign offsets in arbitrary order to the
class’ fields and methods. It compiles those offsets directly into the code.
The code uses the receiver’s pointer (e.g. this) and the offsets to locate any
desired field in the OR or any method in the method vector.

With single inheritance, OR layout is straightforward. Since each class has
only one direct superclass, the compiler appends the new fields to the end
of the superclass OR layout, extending the or layout. This approach, called
prefixing, ensures consistent offsets up and down the superclass hierarchy.
When an object is cast to one of its superclasses, the fields in the Or are in
their expected locations. The ors in Figure 6.7 follow this scheme.

In a language with a closed class structure, object-record layout can be done
at compile time, as soon as all the superclasses are known. In a language
with an open class structure, object-record layout must be done between the
time when the superclass structure is known and the time when ORs are allo-
cated. If the class structure is unknown at compile time but cannot change at
runtime, these issues can be resolved at linktime or at the start of execution.
If the class structure can change at runtime, as in either Java or Smalltalk,
then the runtime environment must be prepared to adjust object layouts and
the class hierarchy.
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m If classes change infrequently, the overhead for adjusting object-record
layouts can be small. The runtime environment, either an interpreter or InJava, for example, classes only change when
a ;T and an interpreter, can compute object record layouts and build the class loader runs. Thus, the class loader could
method vectors for each affected class when the class structure changes. trigger the rebuilding process.
m If classes change often, the compiler must still compute object-record
layouts and adjust them. However, it may be more efficient for the
implementation to use incomplete method vectors and search rather
than rebuilding class method vectors at each change. (See the next
subsection.)

As a final issue, consider what happens if the language allows changes to the
structure of a class that has instantiated objects. Adding a field or a method to
a class with instantiated objects necessitates visiting those objects, building
them new ORs, and connecting those ORs back into the runtime environment
in a seamless way. (Typically, the latter requirement requires an extra level
of indirection on references to ors.) To avoid these complications, most
languages forbid changes to classes that already have instantiated objects.

Static versus Dynamic Dispatch

The runtime structures shown in Figure 6.7 suggest that every method call  Dispatch

requires one or more load operations to locate the method’s implementa-  The process of calling a method is often called
tion. In a language with a closed class structure, the compiler can avoid this ~ dispatch, aterm derived from the message-
overhead for most calls. In c++, for example, the compiler can resolve any passing model of oots such as Smalltak.
method to a concrete implementation at compile time, unless the method

is declared as a virtual method—meaning, essentially, that the programmer

wants to locate the implementation relative to the receiver’s class.

With a virtual method, dispatch is done through the appropriate method
vector. The compiler emits code to locate the method’s implementation at
runtime using the object’s method vector, a process called dynamic dispatch.
If, however, the c++ compiler can prove that some virtual method call has a
known invariant receiver class, it can generate a direct call, sometimes called
static dispatch.

Languages with open class structures may need to rely on dynamic dispatch.
If the class structure can change at runtime, the compiler cannot resolve
method names to implementations; instead, it must defer this process to
runtime. The techniques used to address this problem range from recom-
puting method vectors at each change in the class hierarchy to runtime name
resolution and search in the class hierarchy.

m If the class hierarchy changes infrequently, the implementation may
simply rebuild method vectors for the affected classes after each
change. In this scheme, the runtime system must traverse the superclass
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METHOD CACHES

To support an open class hierarchy, the compiler may need to produce
a search key for each method name and retain a mapping of keys to
implementations that it can search at runtime. The map from method
name to search key can be simple—using the method name or a hash
index for that name—or it can be complex—assigning each method name
an integer from a compact set using some link-time mechanism. In either
case, the compiler must include tables that can be searched at runtime to
locate the implementation of a method in the most recent ancestor of the
receiver’s class.

To improve method lookup in this environment, the runtime system can
implement a method cache—a software analog of the hardware data cache
found in most processors. The method cache has a small number of entries,
say 1000. Each cache entry consists of a key, a class, and a pointer to a
method implementation. A dynamic dispatch begins with a lookup in the
method cache; if it finds an entry with the receiver’s class and method
key, it returns the cached method pointer. If the lookup fails, the dispatch
performs a complete search up the superclass chain, starting with the
receiver’s class. It caches the result that it finds and returns the method
pointer.

Of course, creating a new entry may force eviction of some other cache
entry. Standard cache replacement policies, such as least recently used
or round robin, can select the method to evict. Larger caches retain
more information, but require more memory and may take longer to
search. When the class structure changes, the implementation can clear
the method cache to prevent incorrect results on future lookups.

To capture type locality at individual calls, some implementations use an
inline method cache, a single entry cache located at the actual call site. The
cache stores the receiver’s class and the method pointer from the last
invocation at that site. If the current receiver class matches the previous
receiver class, the call uses the cached method pointer. A change to the
class hierarchy must invalidate the cache, either by changing the class’ tag
or by overwriting the class tags at each inline cache. If the current class
does not match the cached class, a full lookup is used, and that lookup
writes its results into the inline cache.

hierarchy to locate method implementations and build subclass method
vectors.

m If the class hierarchy changes often, the implementor may choose to
keep incomplete method vectors in each class—record just the local
methods. In this scheme, a call to a superclass method triggers a
runtime search in the class hierarchy for the first method of that name.
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Either of these schemes requires that the language runtime retain lookup
tables of method names—either source level names or search keys derived
from those names. Each class needs a small dictionary in its OR. Runtime
name resolution looks up the method name in the dictionaries through the
hierarchy, in a manner analogous to the chain of symbol tables described in
Section 5.5.3.

OOL implementations try to reduce the cost of dynamic dispatch through one
of two general strategies. They can perform analysis to prove that a given
method invocation always uses a receiver of the same known class, in which
case they can replace dynamic dispatch with static dispatch. For calls where
they cannot discover the receiver’s class, or where the class varies at runtime,
the implementations can cache search results to improve performance. In
this scheme, the search consults a method cache before it searches the class
hierarchy. If the method cache contains the mapping for the receiver’s class
and the method name, the call uses the cached method pointer and avoids
the search.

Multiple Inheritance

Some ooLs allow multiple inheritance, meaning a new class may inherit
from several superclasses that have inconsistent object layouts. This sit-
uation poses a new problem: the compiled code for a superclass method
uses offsets based on the or layout for that superclass. Of course, differ-
ent immediate superclasses may assign conflicting offsets to their fields.
To reconcile these competing offsets, the compiler must adopt a slightly
more complex scheme: it must use different OR pointers with methods from
different superclasses.

Consider a class « that inherits from multiple superclasses, 8, y, and é. To
lay out the or for an object of class «, the implementation must first impose
an order on «’s superclasses—say B, y, 8. It lays out the or for class « as
the entire OR, including class pointer and method vector, for 8, followed by
the entire OR for y, followed by the entire OR for §. To this layout, it appends
any fields declared locally in the declaration of «. It constructs the method
vector for o by appending «’s methods to the method vector for the first
superclass.

The drawing in the margin shows the resulting OR layout for class o, We
assume that « defines two local fields, «; and oy, and that the fields of
B, v, and § are named similarly. The or for « divides into four logical
sections: the or for B8, the or for y, the or for §, and the space for fields
declared in «. Methods declared in « are appended to the method vector for
the first section. The “shadow” class pointers and method vectors, whose
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labels appear in gray, exist to allow those superclass methods to receive

class| o the environment that they expect—the OR layout of the corresponding
methods| e gmethods superclass.
Pr| | |amethods The remaining complication involved in multiple inheritance lies in the fact
‘ Pl | that the Or pointer must be adjusted when a superclass method is invoked
clras o . . . .
) — using one of the shadow class pointers and method vectors. The invocation
methods| e— ymethods . . . .
— must adjust the pointer by the distance between the class pointer at the top of
Y1 . . . .
val the or and the shadow class pointer. The simplest mechanism to accomplish
2 - S . .
val ] this adjustment is to insert a trampoline function between the method vector
e . o ] and the actual method. The trampoline adjusts the OR pointer, invokes the
N meth ith all of the parameters, and readj he oOR pointer on return.
ods[ e s methods ethod with all of the parameters, and readjusts the OR pointer on retu
31
o
g SECTION REVIEW
o2

Algol-like languages typically use lexical scoping, in which names
Object Record for « spaces are properly nested and new instances of a name obscure older
ones. To hold data associated with its local scope, a procedure has an
activation record for each invocation. In contrast, while object-oriented
languages may use lexical scopes for procedure-local names, they

also rely on a hierarchy of scopes defined by the data—~by the
hierarchy of class definitions. This dual-hierarchy name space leads

to more complex interactions among names and to more complex
implementations.

Both styles of naming require runtime structures that both reflect and
implement the naming hierarchy. In an ALL, the activation records

can capture the structure of the name space, provide the necessary
storage for most values, and preserve the state necessary for correct
execution. In an OOL, the activation records of running code still

capture the lexically scoped portion of the name space and the state of
execution; however, the implementation also needs a hierarchy of object
records and class records to model the object-based portion of the

name space.

|
Review Questions
1. In C, setjmp and Tongjmp provide a mechanism for interprocedural
transfer of control. set jmp creates a data structure; invoking Tongjmp
on the data structure created by a setjmp causes execution to con-
tinue immediately after the setjmp, with the context present when
the setjmp executed. What information must setjmp preserve? How
does the implementation of set jmp change between stack-allocated
and heap-allocated ARs?
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2. Consider the example from Figure 6.7. If the compiler encounters a
reference to LeftCorner with a cast to class Point, which implemen-
tation of the method draw would that cast reference invoke? How
could the programmer refer to the other implementation of draw?

|

6.4 COMMUNICATING VALUES BETWEEN
PROCEDURES

The central notion underlying the concept of a procedure is abstraction. The
programmer abstracts common operations relative to a small set of names,
or formal parameters, and encapsulates those operations in a procedure. To
use the procedure, the programmer invokes it with an appropriate bind-
ing of values, or actual parameters, to those formal parameters. The callee
executes, using the formal parameter names to access the values passed as
actual parameters. If the programmer desires, the procedure can return a
result.

6.4.1 Passing Parameters

Parameter binding maps the actual parameters at a call site to the callee’s
formal parameters. It lets the programmer write a procedure without knowl-
edge of the contexts in which it will be called. It lets the programmer invoke
the procedure from many distinct contexts without exposing details of the
procedure’s internal operation in each caller. Thus, parameter binding plays
a critical role in our ability to write abstract, modular code.

Most modern programming languages use one of two conventions for map-
ping actual parameters to formal parameters: call-by-value binding and
call-by-reference binding. These techniques differ in their behavior. The
distinction between them may be best explained by understanding their
implementations.

Call by Value

Consider the following procedure, written in c, and several call sites that  Call by value

invoke it: a convention where the caller evaluates the
. . . actual parameters and passes their values to the
int fee(int x, int y) { c = fee(2,3); allee
X =2 x X; a=2; . .
Y= x +y; b = 3: Anym.od|f|cat'|f.)n ofa value parameter in the
callee is not visible in the caller.
return y; c = fee(a,h);
} a=2;
b = 3;
c = fee(a,a);
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CALL-BY-NAME PARAMETER BINDING

Algol introduced another parameter-binding mechanism, call by name. In
call-by-name binding, a reference to a formal parameter behaves exactly
as if the actual parameter had been textually substituted in its place, with
appropriate renaming. This simple rule can lead to complex behavior.
Consider the following artificial example in Algol 60:

begin comment Simple array example;

procedure zero(Arr,i,j,ul,u2);
integer Arr;
integer i,j,ul,u2;
begin;
for i :=1 step 1 until ul do
for j := 1 step 1 until u2 do
Arr := 0;
end;
integer array Work[1:100,1:200];
integer p, q, X, Yy, Z;

x := 100;

y := 200;

zero(Worklp,ql,p.q,Xx,y);
end

The call to zero assigns zero to every element of the array Work. To see
this, rewrite zero with the text of the actual parameters.

While call-by-name binding was easy to define, it was difficult to imple-
ment and to understand. In general, the compiler must produce, for
each formal parameter, a function that evaluates the actual parameter
to return a pointer. These functions are called thunks. Generating compe-
tent thunks was complex; evaluating a thunk for each parameter access
was expensive. In the end, these disadvantages overcame any advantages
that call-by-name parameter binding offered.

The R programming language, a domain-specific tool for statistical analy-
sis, implements a lazy form of call-by-value binding. The implementation
creates and passes thunks that are invoked the first time that the parame-
ter value is actually referenced. The thunk, or promise, stores its result for
subsequent references.

With call-by-value parameter passing, as in c, the caller copies the value
of an actual parameter into the appropriate location for the corresponding
formal parameter—either a register or a parameter slot in the callee’s AR.
Only one name refers to that value—the name of the formal parameter. Its
value is an initial condition, determined by evaluating the actual parameter



6.4 Communicating Values Between Procedures 299

at the time of the call. If the callee changes its value, that change is visible
inside the callee, but not in the caller.

The three invocations produce the following results when invoked using
call-by-value parameter binding:

Call by a b Return

Value in out in out Value
fee(2,3) - - - - 7
fee(a,b) 2 2 3 3 7
fee(a,a) 2 2 3 3 6

With call by value, the binding is simple and intuitive.

One variation on call-by-value binding is call-by-value-result binding. In the
value-result scheme, the values of formal parameters are copied back into the
corresponding actual parameters as part of the process of returning control
from the callee to the caller. The programming language Ada includes value-
result parameters. The value-result mechanism also satisfies the rules of the
FORTRAN 77 language definition.

Call by Reference

With call-by-reference parameter passing, the caller stores a pointer in the
AR slot for each parameter. If the actual parameter is a variable, it stores
the variable’s address in memory. If the actual parameter is an expression,
the caller evaluates the expression, stores the result in the local data area of
its own AR, and then stores a pointer to that result in the appropriate parame-
ter slot in the callee’s AR. Constants should be treated as expressions to avoid
any possibility of the callee changing the value of a constant. Some lan-
guages forbid passing expressions as actual parameters to call-by-reference
formal parameters.

Inside the callee, each reference to a call-by-reference formal parameter
needs an extra level of indirection. Call by reference differs from call by
value in two critical ways. First, any redefinition of a reference formal
parameter is reflected in the corresponding actual parameter. Second, any
reference formal parameter might be bound to a variable that is accessible
by another name inside the callee. When this happens, we say that the names
are aliases, since they refer to the same storage location. Aliasing can create
counterintuitive behavior.

Call by reference
a convention where the compiler passes an
address for the formal parameter to the callee

If the actual parameter is a variable (rather than
an expression), then changing the formal’s value
also changes the actual’s value.
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Consider the earlier example, rewritten in PL/I, which uses call-by-reference
parameter binding.

fee: procedure (x,y) c = fee(2,3);
returns fixed binary; a = 2;
declare x, y fixed binary; b =3;

X =2 % X; c = fee(a,b);
y=x+ty; a=2;
return y; b =3;

end fee; c = fee(a,a);

With call-by-reference parameter binding, the example produces different
results. The first call is straightforward. The second call redefines both a
and b; those changes would be visible in the caller. The third call causes

Alias x and y to refer to the same location, and thus, the same value. This alias
When two names can refer to the same location, changes fee’s behavior. The first assignment gives a the value 4. The second
they are said to be aliases. assignment then gives a the value 8, and fee returns 8, where fee(2,2)
In the example, the third call creates an alias would return 6.

between x and y inside fee.

Call by a b Return

Reference in out in out Value

fee(2,3) - - - - 7
fee(a,b) 2 4 3 7 7
fee(a,a) 2 8 3 3 8

Space for Parameters

The size of the representation for a parameter has an impact on the cost
of procedure calls. Scalar values, such as variables and pointers, are stored
in registers or in the parameter area of the callee’s ArR. With call-by-value
parameters, the actual value is stored; with call-by-reference parameters, the
address of the parameter is stored. In either case, the cost per parameter is
small.

Large values, such as arrays, records, or structures, pose a problem for call
by value. If the language requires that large values be copied, the overhead
of copying them into the callee’s parameter area will add significant cost to
the procedure call. (In this case, the programmer may want to model call by
reference and pass a pointer to the object rather than the object.) Some lan-
guages allow the implementation to pass such objects by reference. Others
include provisions that let the programmer specify that passing a particular
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parameter by reference is acceptable; for example, the const attribute in
assures the compiler that a parameter with the attribute is not modified.

6.4.2 Returning Values

To return a value from a function the compiler must set aside space for the

returned value. Because the return value, by definition, is used after the  With call-by-value parameters, linkage

callee terminates, it needs storage outside the callee’s AR. If the compiler ~ Conventionsoften designate the register

writer can ensure that the return value is of small fixed size, then it can store reserved for the first parameter as the register to
. . , . . . hold the return value.

the value either in the caller’s AR or in a designated register.

All of our pictures of the AR have included a slot for a returned value. To
use this slot, the caller allocates space for the returned value in its own AR,
and stores a pointer to that space in the return slot of its own AR. The callee
can load the pointer from the caller’s return-value slot (using the copy of the
caller’s ARP that it has in the callee’s AR). It can use the pointer to access the
storage set aside in the caller’s AR for the returned value. As long as both
caller and callee agree about the size of the returned value, this works.

If the caller cannot know the size of the returned value, the callee may need
to allocate space for it, presumably on the heap. In this case, the callee allo-
cates the space, stores the returned value there, and stores the pointer in the
return-value slot of the caller’s AR. On return, the caller can access the return
value using the pointer that it finds in its return-value slot. The caller must
free the space allocated by the callee.

If the return value is small—the size of the return-value slot or less—then the
compiler can eliminate the indirection. For a small return value, the callee
can store the value directly into the return value slot of the caller’s AR. The
caller can then use the value directly from its AR. This improvement requires,
of course, that the compiler handle the value in the same way in both the
caller and the callee. Fortunately, type signatures for procedures can ensure
that both compiles have the requisite information.

6.4.3 Establishing Addressability

As part of the linkage convention, the compiler must ensure that each pro-  Data area

cedure can generate an address for each variable that it needs to reference.  Theregionin memory that holds the data for a
In an ALL, a procedure can refer to global variables, local variables, and any specific scope is called its data area.
variable declared in a surrounding lexical scope. In general, the address cal- ~ Base address

culation consists of two portions: finding the base address of the appropriate ¢ address of the start of a data area s often
data area for the scope that contains the value, and finding the correct offset Called a base adress.

within that data area. The problem of finding base addresses divides into two
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cases: data areas with static base addresses and those whose address cannot
be known until runtime.

Variables with Static Base Addresses

Compilers typically arrange for global data areas and static data areas to have
static base addresses. The strategy to generate an address for such a variable
is simple: compute the data area’s base address into a register and add its
offset to the base address. The compiler’s 1R will typically include address
modes to represent this calculation; for example, in 1ILOC, 10adAT represents
a “register + immediate offset” mode and 10adA0 represents a “register +
register” mode.

To generate the runtime address of a static base address, the compiler
attaches a symbolic, assembly-level label to the data area. Depending on
the target machine’s instruction set, that label might be used in a load imme-
diate operation or it might be used to initialize a known location, in which
case it can be moved into a register with a standard load operation.

Name mangling The compiler constructs the label for a base address by mangling the name.
The process of constructing a unique string froma  Typically, it adds a prefix, a suffix, or both to the original name, using char-
source-language name s called name mangling.  4cters that are legal in the assembly code but not in the source language. For

If & Fee . istoo long for an immediate load, the example, mangling the global variable name fee might produce the label

compiler may need to use multiple operations to &fee.; the label is then attached to an assembly-language pseudo-operation

load the address. that reserves space for fee. To move the address into a register, the compiler
might emit an operation such as 1oadI &fee. = r;. Subsequent operations
can then use rj to access the memory location for fee. The label becomes a
relocatable symbol for the assembler and the loader, which convert it into a
runtime virtual address.

Global variables may be labelled individually or in larger groups. In
FORTRAN, for example, the language collects global variables into common
blocks. A typical FORTRAN compiler establishes one label for each com-
mon block. It assigns an offset to each variable in each common block and
generates 1oad and store operations relative to the common block’s label.
If the data area is larger than the offset allowed in a “register 4 offset”
operation, it may be advantageous to have multiple labels for parts of the
data area.

Similarly, the compiler may combine all the static variables in a single scope
into one data area. This reduces the likelihood of an unexpected naming
conflict; such conflicts are discovered during linking or loading and can be
confusing to the programmer. To avoid such conflicts, the compiler can base
the label on a globally visible name associated with the scope. This strategy
decreases the number of base addresses in use at any time, reducing demand
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for registers. Using too many registers to hold base addresses may adversely
affect overall runtime performance.

Variables with Dynamic Base Addresses

As described in Section 6.3.2, local variables declared within a procedure
are typically stored in the procedure’s AR. Thus, they have dynamic base
addresses. To access these values, the compiler needs a mechanism to find
the addresses of various ARs. Fortunately, lexical scoping rules limit the set
of ARs that can be accessed from any point in the code to the current AR and
the ARrs of lexically enclosing procedures.

Local Variable of the Current Procedure

Accessing a local variable of the current procedure is trivial. Its base address
is simply the address of the current AR, which is stored in the ARP. Thus, the
compiler can emit code that adds its offset to the ArRP and uses the result as
the value’s address. (This offset is the same value as the offset in the value’s
static coordinate.) In 1LOC the compiler might use a ToadAI (an “address +
immediate offset” operation) or a 10adA0 (an “address + offset” operation).
Most processors provide efficient support for these common operations.

In some cases, a value is not stored at a constant offset from the arp. The
value might reside in a register, in which case loads and stores are not
needed. If the variable has an unpredictable or changing size, the compiler
will store it in an area reserved for variable-size objects, either at the end
of the AR or in the heap. In this case, the compiler can reserve space in the
AR for a pointer to the variable’s actual location and generate one additional
load to access the variable.

Local Variables of Other Procedures

To access a local variable of some enclosing lexical scope, the compiler
must arrange for the construction of runtime data structures that map a static
coordinate, produced using a lexically-scoped symbol table in the parser,
into a runtime address.

For example, assume that procedure fee, at lexical level m, references vari-
able a from fee’s lexical ancestor fie, at level n. The parser converts this
reference into a static coordinate (n,0), where o is a’s offset in the AR for fie.
The compiler can compute the number of lexical levels between fee and fie
as m—n. (The coordinate (m-n,0) is sometimes called the static-distance
coordinate of the reference.)

The compiler needs a mechanism to convert (n,0) into a runtime address.
In general, that scheme will use runtime data structures to find the Arp of
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the most recent level n procedure, and use that ARP as the base address in
its computation. It adds the offset o to that base address to produce a run-
time address for the value whose static coordinate is (n,0). The complication
lies in building and traversing the runtime data structures to find the base
address. The following subsections examine two common methods: use of
access links and use of a global display.

Access Links

The intuition behind access links is simple. The compiler ensures that each
AR contains a pointer, called an access link or a static link, to the AR of
its immediate lexical ancestor. The access links form a chain that includes
all the lexical ancestors of the current procedure, as shown in Figure 6.8.
Thus, any local variable of another procedure that is visible to the current
procedure is stored in an AR on the chain of access links that begins in the
current procedure.

To access a value (n,0) from a level m procedure, the compiler emits code
to walk the chain of links and find the level n ARP. Next, it emits a load
that uses the level n ARP and o. To make this concrete, consider the program
represented by Figure 6.8. Assume that m is 2 and that the access link is
stored at an offset of —4 from the ArP. The following table shows a set of

Level 0

Local-Data Area

Level 1 Caller's ARP  ——=
Local-Data Area Access Link —=
Level 2 Caller's ARP |, Return Address
Local-Data Area Access Link Return Value
ARP Caller's ARP L Return Address Register-Save Area
Access Link Return Value
Parameters
Return Address Register-Save Area

Return Value

Parameters

Register-Save Area

Parameters

M FIGURE 6.8 Using Access Links.
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three different static coordinates alongside the 1ILoC code that a compiler
might generate for them. Each sequence leaves the result in rp.

Coordinate Code

(2,24) ToadAl rarp,24 = ry

(1,12) 1oadAl rarp, -4 = rg
loadAl I"l,lz = I

(0,16) ToadAl rarp, -4 =
loadAl rq,-4 = nr
lToadAl I"l,16 = Iy

Since the compiler has the static coordinate for each reference, it can
compute the static distance (m—n). The distance tells it how many chain-
following loads to generate, so the compiler can emit the correct sequence
for each nonlocal reference. The cost of the address calculation is propor-
tional to the static distance. If programs exhibit shallow lexical nesting, the
difference in cost between accessing two variables at different levels will be
fairly small.

To maintain access links, the compiler must add code to each procedure call
that finds the appropriate ARP and stores it as the callee’s access link. For a
caller at level m and a callee at level n, three cases arise. If n =m + 1, the
callee is nested inside the caller, and the callee can use the caller’s ARP as its
access link. If n = m, the callee’s access link is the same as the caller’s access
link. Finally, if n < m, the callee’s access link is the level n — 1 access link
for the caller. (If n is zero, the access link is null.) The compiler can generate
a sequence of m —n + 1 loads to find this ARP and store that pointer as the
callee’s access link.

Global Display

In this scheme, the compiler allocates a single global array, called the
display, to hold the arp of the most recent activation of a procedure at
each lexical level. All references to local variables of other procedures
become indirect references through the display. To access a variable (n,0),
the compiler uses the ARP from element n of the display. It uses o as the
offset and generates the appropriate load operation. Figure 6.9 shows this
situation.

Returning to the static coordinates used in the discussion of access links, the
following table shows code that the compiler might emit for a display-based
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Display Level 0
Level 0
Local-Data Area
Level 1
Level 1 ’
Level 2 eve Caller's ARP =
Level3 [ = Local-Data Area Saved Pointer
Level 2 Caller's ARP > Return Address
] Return Value
Local-Data Area Saved Pointer
, - Return Address Register-Save Area
ARP Caller's ARP
) Return Value Parameters
Saved Pointer
Register-Save Area
Return Address
Return Value Parameters

Register-Save Area

Parameters

M FIGURE 6.9 Using a Global Display.

implementation. Assume that the current procedure is at lexical level 2, and
that the label _disp gives the address of the display.

Coordinate Code
(2,24) ToadAl rarp, 24 = 1y
(1,12) loadI _disp ry

=

loadAl rq,4 = rp

loadAl rq,12 = ry
=
=

(0,16) loadI _disp
loadAl ry, 16

5]
r2

With a display, the cost of nonlocal access is fixed. With access links, the
compiler generates a series of m—n loads; with a display, it uses n x [ as
offset into the display, where / is the length of a pointer (4 in the example).
Local access is still cheaper than nonlocal access, but with a display, the
penalty for nonlocal access is constant, rather than variable.

Of course, the compiler must insert code where needed to maintain the dis-
play. Thus, when procedure p at level n calls some procedure g at level n+1,
P’s ARP becomes the display entry for level n. (While p is executing, that
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entry is unused.) The simplest way to keep the display current is to have p
update the level n entry when control enters p and to restore it on exit from p.
On entry, p can copy the level n display entry to the reserved addressability
slot in its AR and store its own ARP in the level n slot of the display.

Many of these display updates can be avoided. The only procedures that can
use the ARP stored by a procedure p are procedures ¢ that p calls (directly or
indirectly), where ¢ is nested inside p’s scope. Thus, any p that does not call
a procedure nested inside itself need not update the display. This eliminates
all updates in leaf procedures, as well as many other updates.

SECTION REVIEW

If the fundamental purpose of a procedure is abstraction, then the
ability to communicate values between procedures is critical to their
utility. The flow of values between procedures occurs with two different
mechanisms: the use of parameters and the use of values that are

visible in multiple procedures. In each of these cases, the compiler writer
must arrange access conventions and runtime structures to support the
access. For parameter binding, two particular mechanisms have emerged
as the common cases: call by value and call by reference. For nonlocal
accesses, the compiler must emit code to compute the appropriate base
addresses. Two mechanisms have emerged as the common cases: access
links and a display.

The most confusing aspect of this material is the distinction between
actions that happen at compile time, such as the parser finding static
coordinates for a variable, and those that happen at runtime, such as
the executing program tracing up a chain of access links to find the ARP
of some surrounding scope. In the case of compile-time actions, the
compiler performs the action directly. In the case of runtime actions, the
compiler emits code that will perform the action at runtime.

[
Review Questions su?;ggt;?enchange(n)
1. An early FORTRAN implementation had an odd bug. The short program n = E x 2
in the margin would print, as its result, the value 16. What did the  end
compiler do that led to this result? What should it have done instead? program test
(FORTRAN uses call-by-reference parameter binding.) call change(2)
2. Compare and contrast the costs involved in using access links ver- print =, 2 x 2

sus global displays to establish addresses for references to variables end

declared in surrounding scopes. Which would you choose? Do lan-
guage features affect your choice?
|



308 CHAPTER 6 The Procedure Abstraction

6.5 STANDARDIZED LINKAGES

The procedure linkage is a contract between the compiler, the operating sys-
tem, and the target machine that clearly divides responsibility for naming,
allocation of resources, addressability, and protection. The procedure linkage
ensures interoperability of procedures between the user’s code, as translated
by the compiler, and code from other sources, including system libraries,
application libraries, and code written in other programming languages.
Typically, all of the compilers for a given combination of target machine
and operating system use the same linkage, to the extent possible.

The linkage convention isolates each procedure from the different environ-
ments found at call sites that invoke it. Assume that procedure p has an
integer parameter x. Different calls to p might bind x to a local variable stored
in the caller’s stack frame, to a global variable, to an element of some static
array, and to the result of evaluating an integer expression such as y + 2.
Because the linkage convention specifies how to evaluate the actual param-
eter and store its value, as well as how to access x in the callee, the compiler
can generate code for the callee that ignores the differences between the run-
time environments at the different calls sites. As long as all the procedures
obey the linkage convention, the details will mesh to create the seamless
transfer of values promised by the source-language specification.

The linkage convention is, of necessity, machine dependent. For example, it
depends implicitly on information such as the number of registers available
on the target machine and the mechanisms for executing a call and a return.

Figure 6.10 shows how the pieces of a standard procedure linkage fit
together. Each procedure has a prologue sequence and an epilogue sequence.
Each call site includes both a precall sequence and a postreturn sequence.

Procedure p

Prologue

Procedure q

g&\ Prologue

Precall

A
Postreturn @’2/,,)

Epilogue

Epilogue

M FIGURE 6.10 A Standard Procedure Linkage.
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m  Precall Sequence The precall sequence begins the process of
constructing the callee’s environment. It evaluates the actual
parameters, determines the return address, and, if necessary, the address
of space reserved to hold a return value. If a call-by-reference parameter
is currently allocated to a register, the precall sequence needs to store it
into the caller’s AR so that it can pass that location’s address to the
callee.

Many of the values shown in the diagrams of the AR can be passed to
the callee in registers. The return address, an address for the return
value, and the caller’s ARrp are obvious candidates. The first k actual
parameters can be passed in registers as well—a typical value for k
might be 4. If the call has more than k parameters, the remaining
actual parameters must be stored in either the callee’s AR or the
caller’s AR.

m  Postreturn Sequence The postreturn sequence undoes the actions of the
precall sequence. It must restore any call-by-reference and
call-by-value-result parameters that need to be returned to registers. It
restores any caller-saved registers from the register save area. It may
need to deallocate all or part of the callee’s AR.

m  Prologue Sequence The prologue for a procedure completes the task of
creating the callee’s runtime environment. It may create space in the
callee’s AR to store some of the values passed by the caller in registers.
It must create space for local variables and initialize them, as necessary.
If the callee references a procedure-specific static data area, it may need
to load the label for that data area into a register.

m  Epilogue Sequence The epilogue for a procedure begins the process
of dismantling the callee’s environment and reconstructing the
caller’s environment. It may participate in deallocating the callee’s AR.
If the procedure returns a value, the epilogue may be responsible
for storing the value into the address specified by the caller.
(Alternatively, the code generated for a return statement may perform
this task.) Finally, it restores the caller’s ARP and jumps to the return
address.

This framework provides general guidance for building a linkage conven-
tion. Many of the tasks can be shifted between caller and callee. In general,
moving work into the prologue and epilogue code produces more com-
pact code. The precall and postreturn sequences are generated for each call,
while the prologue and epilogue occur once per procedure. If procedures
are called, on average, more than once, then there are fewer prologue and
epilogue sequences than precall and postreturn sequences.
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MORE ABOUT TIME

In a typical system, the linkage convention is negotiated between the com-
piler implementors and the operating-system implementors at an early
stage of the system’s development. Thus, issues such as the distinction
between caller-saves and callee-saves registers are decided at design
time. When the compiler runs, it must emit procedure prologue and
epilogue sequences for each procedure, along with precall and postre-
turn sequences for each call site. This code executes at runtime. Thus, the
compiler cannot know the return address that it should store into a callee’s
AR. (Neither can it know, in general, the address of that AR.) It can, however,
include a mechanism that will generate the return address at link time
(using a relocatable assembly language label) or at runtime (using some
offset from the program counter) and store it into the appropriate location
in the callee’s AR.

Similarly, in a system that uses a display to provide addressability for
local variables of other procedures, the compiler cannot know the runtime
addresses of the display or the AR. Nonetheless, it emits code to maintain
the display. The mechanism that achieves this requires two pieces of infor-
mation: the lexical nesting level of the current procedure and the address
of the global display. The former is known at compile time; the latter can
be determined at link time by using a relocatable assembly language label.
Thus, the prologue can simply load the current display entry for the pro-
cedure’s level (using a 1T0adAO from the display address) and store it into
the AR (using a storeAO relative to the ARP). Finally, it stores the address
of the new AR into the display slot for the procedure’s lexical level.

Saving Registers

At some point in the call sequence, any register values that the caller expects

Caller-saves registers to survive across the call must be saved into memory.Either the caller or the

The registers designated for the caller to save callee can perform the actual save; there is an advantage to either choice.
are caller-saves registers. If the caller saves registers, it can avoid saving values that it knows are not
Callee-saves registers useful across the call; that knowledge might allow it to preserve fewer values.
The registers designated for the callee to save Similarly, if the callee saves registers, it can avoid saving values of registers
are callee-saves registers. that it does not use; again, that knowledge might result in fewer saved values.

In general, the compiler can use its knowledge of the procedure being com-
piled to optimize register save behavior. For any specific division of labor
between caller and callee, we can construct programs for which it works
well and programs for which it does not. Most modern systems take a middle
ground and designate a portion of the register set for caller-saves treatment
and a portion for callee-saves treatment. In practice, this seems to work well.
It encourages the compiler to put long-lived values in callee-saves registers,
where they will be stored only if the callee actually needs the register. It
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encourages the compiler to put short-lived values in caller-saves registers,
where it may avoid saving them at a call.

Allocating the Activation Record

In the most general case, both the caller and the callee need access to the
callee’s AR. Unfortunately, the caller cannot know, in general, how large the
callee’s AR must be (unless the compiler and linker can contrive to have
the linker paste the appropriate values into each call site).

With stack-allocated ARs, a middle ground is possible. Since allocation con-
sists of incrementing the stack-top pointer, the caller can begin the creation
of the callee’s AR by bumping the stack top and storing values into the
appropriate places. When control passes to the callee, it can extend the par-
tially built AR by incrementing the stack top to create space for local data.
The postreturn sequence can then reset the stack-top pointer, performing the
entire deallocation in a single step.

With heap-allocated ARs, it may not be possible to extend the callee’s AR
incrementally. In this situation, the compiler writer has two choices.

1. The compiler can pass the values that it must store in the callee’s AR in
registers; the prologue sequence can then allocate an appropriately sized
AR and store the passed values in it. In this scheme, the compiler writer
reduces the number of values that the caller passes to the callee by
arranging to store the parameter values in the caller’s AR. Access to
those parameters uses the copy of the caller’s ARP that is stored in the
callee’s AR.

2. The compiler writer can split the AR into multiple distinct pieces, one to
hold the parameter and control information generated by the caller and
the others to hold space needed by the callee but unknown to the caller.
The caller cannot, in general, know how large to make the local data
area. The compiler can store this number for each callee using mangled
labels; the caller can then load the value and use it. Alternatively, the
callee can allocate its own local data area and keep its base address in a
register or in a slot in the AR created by the caller.

Heap-allocated aArs add to the overhead cost of a procedure call. Care in the
implementation of the calling sequence and the allocator can reduce those
costs.

Managing Displays and Access Links

Either mechanism for managing nonlocal access requires some work in the
calling sequence. Using a display, the prologue sequence updates the dis-
play record for its own level and the epilogue sequence restores it. If the
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procedure never calls a more deeply nested procedure, it can skip this step.
Using access links, the precall sequence must locate the appropriate first
access link for the callee. The amount of work varies with the difference
in lexical level between caller and callee. As long as the callee is known at
compile time, either scheme is reasonably efficient. If the callee is unknown
(if it is, for example, a function-valued parameter), the compiler may need
to emit special-case code to perform the appropriate steps.

SECTION REVIEW

The procedure linkage ties together procedures. The linkage convention
is a social contract between the compiler, the operating system, and

the underlying hardware. It governs the transfer of control between
procedures, the preservation of the caller’s state and the creation of the
callee’s state, and the rules for passing values between them.

Standard procedure linkages allow us to assemble executable programs
from procedures that have different authors, that are translated at
different times, and that are compiled with different compilers.
Procedure linkages allow each procedure to operate safely and correctly.
The same conventions allow application code to invoke system and
library calls. While the details of the linkage convention vary from system
to system, the basic concepts are similar across most combinations of
target machine, operating system, and compiler.

|

Review Questions

1. What role does the linkage convention play in the construction of large
programs? Of interlanguage programs? What facts would the compiler
need to know in order to generate code for an interlanguage call?

2. If the compiler knows, at a procedure call, that the callee does not,
itself, contain any procedure calls, what steps might it omit from the
calling sequence? Are there any fields in the AR that the callee would
never need?

|

6.6 ADVANCED TOPICS

The compiler must arrange for the allocation of space to hold the vari-
ous runtime structures discussed in Section 6.3. For some languages, those
structures have lifetimes that do not fit well into the first-in first-out disci-
pline of a stack. In such cases, the language implementation allocates space
in the runtime heap—a region of memory set aside for such objects and
managed by routines in a runtime support library. The compiler must also
arrange storage for other objects that have lifetimes unrelated to the flow of
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control, such as many lists in a Scheme program or many objects in a Java
program.

We assume a simple interface to the heap, namely, a routine allo-
cate(size) and aroutine free(address). The allocate routine takes an
integer argument size and returns the address of a block of space in the
heap that contains at least size bytes. The free routine takes the address
of a block of previously allocated space in the heap and returns it to the
pool of free space. The critical issues that arise in designing algorithms for
explicitly managing the heap are the speeds of both allocate and free and
the extent to which the pool of free space becomes fragmented into small
blocks.

This section sketches the algorithms involved in allocation and reclama-
tion of space in a runtime heap. Section 6.6.1 focuses on techniques for
explicit management of the heap. Along the way, it describes how to
implement free for each of the schemes. Section 6.6.2 examines implicit
deallocation—techniques that avoid the need for free.

6.6.1 Explicit Heap Management

Most language implementations include a runtime system that provides sup-
port functions for the code generated by the compiler. The runtime system
typically includes provision for management of a runtime heap. The actual
routines that implement the heap may be language specific, as in a Scheme
interpreter or a Java virtual machine, or they may be part of the underlying
operating system, as in the Posix implementations of malloc and free.

While many techniques have been proposed to implement allocate and
free, most of those implementations share common strategies and insights.
This section explores a simple strategy, first-fit allocation, that exposes most
of the issues, and then shows how a strategy such as first fit is used to
implement a modern allocator.

First-Fit Allocation

The goal of a first-fit allocator is to allocate and free space in the heap
quickly. First fit emphasizes speed over memory utilization. Every block
in the heap has a hidden field that holds its size. In general, the size field is
located in the word preceding the address returned by allocate, as shown
in Figure 6.11a. Blocks available for allocation reside on a list called the free
list. In addition to the mandatory size field, blocks on the free list have addi-
tional fields, as shown in Figure 6.11b. Each free block has a pointer to the
next block on the free list (set to null in the last block) and a pointer to the
block itself in the last word of the block. To initialize the heap, the allocator
creates a free list that contains a single large unallocated block.
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next
(a) Allocated Block (b) Free Block

M FIGURE 6.11 Blocks in a First-Fit Allocator.

A call allocate(k) causes the following sequence of events: The allo-
cate routine walks the free list until it discovers a block with size greater
than or equal to k plus one word for the size field. Assume it finds an appro-
priate block, ;. It removes b; from the free list. If 4; is larger than necessary,
allocate creates a new free block from the excess space at the end of b;
and places that block on the free list. The a11locate routine returns a pointer
to the second word of b;.

If allocate fails to find a large enough block, it tries to extend the heap.
If it succeeds in extending the heap, it returns a block of appropriate size
from this newly allocated portion of the heap. If extending the heap fails,
allocate reports failure (typically by returning a null pointer).

To deallocate a block, the program calls free with the address of the block,
bj. The simplest implementation of free adds b; to the head of the free list
and returns. This produces a fast free routine. Unfortunately, it leads to an
allocator that, over time, fragments memory into small blocks.

To overcome this flaw, the allocator can use the pointer at the end of a freed
block to coalesce adjacent free blocks. The free routine loads the word pre-
ceding b;’s size field, which is the end-of-block pointer for the block that
immediately precedes b; in memory. If that word contains a valid pointer,
and it points to a matching block header (one whose address plus size field
points to the start of b;), then both b; and its predecessor are free. The free
routine can combine them by increasing the predecessor’s size field and stor-
ing the appropriate pointer at the end of bj. Combining these blocks lets free
avoid updating the free list.

To make this scheme work, allocate and free must maintain the end-of-
block pointers. Each time that free processes a block, it must update that
pointer with the address of the head of the block. The allocate routine
must invalidate either the next pointer or the end-of-block pointer to prevent
free from coalescing a freed block with an allocated block in which those
fields have not been overwritten.

The free routine can also try to combine bj with its successor in memory,
by. It can use bj’s size field to locate the start of by. It can use by’s size field
and end-of-block pointer to determine if by is free. If by is free, then free
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ARENA-BASED ALLOCATION

Inside the compiler itself, the compiler writer may find it profitable to use
a specialized allocator. Compilers have phase-oriented activity. This lends
itself well to an arena-based allocation scheme.

With an arena-based allocator, the program creates an arena at the begin-
ning of an activity. It uses the arena to hold allocated objects that are
related in their use. Calls to allocate objects in the arena are satisfied in
a stacklike fashion; an allocation involves incrementing a pointer to the
arena’s high-water mark and returning a pointer to the newly allocated
block. No call is used to deallocate individual objects; they are freed when
the arena that contains them is deallocated.

The arena-based allocator is a compromise between traditional allocators
and garbage-collecting allocators. With an arena-based allocator, the calls
to allocate can be made lightweight (as in the modern allocator). No
freeing calls are needed; the program frees the entire arena in a single call
when it finishes the activity for which the arena was created.

can combine the two blocks, removing by from the free list, adding bj to the
free list, and updating b;’s size field and end-of-block pointer appropriately.
To make the free-list update efficient, the free list should be a doubly linked
list. Of course, the pointers are stored in unallocated blocks, so the space
overhead is irrelevant. Extra time required to update the doubly linked free
list is minimal.

As described, the coalescing scheme depends on the fact that the relationship
between the final pointer and the size field in a free block are absent in an
allocated block. While it is extremely unlikely that the allocator will identify
an allocated block as free, this can happen. To ensure against this unlikely
event, the implementor can make the end-of-block pointer a field that exists
in both allocated and free blocks. On allocation, the pointer is set to contain
an address outside the heap, such as zero. On freeing, the pointer is set to
the block’s own address. The cost of this added assurance is an extra field in
each allocated block and an extra store for each allocation.

Many variations on first-fit allocation have been tried. They trade off the
cost of allocate, the cost of free, the amount of fragmentation produced
by a long series of allocations, and the amount of space wasted by returning
blocks larger than requested.

Multipool Allocators

Modern allocators are derived from first-fit allocation but simplified by a
couple of observations about the behavior of programs. As memory sizes
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grew in the early 1980s, it became reasonable to waste some space if doing
so led to faster allocation. At the same time, studies of program behavior
suggested that real programs allocate memory frequently in a few common
sizes and infrequently in large or unusual sizes.

Modern allocators use separate memory pools for several common sizes.
Typically, selected sizes are powers of two, starting with a small block size
(such as 16 bytes) and running up to the size of a virtual-memory page (typi-
cally 4096 or 8192 bytes). Each pool has only one size of block, soallocate
can return the first block on the appropriate free list, and free can simply
add the block to the head of the appropriate free list. For requests larger
than a page, a separate first-fit allocator is used. Allocators based on these
ideas are fast. They work particularly well for heap allocation of activation
records.

These changes simplify both allocate and free. The allocate routine
must check for an empty free list and adds a new page to the free list if it
is empty. The free routine inserts the freed block at the head of the free
list for its size. A careful implementation could determine the size of a freed
block by checking its address against the memory segments allocated for
each pool. Alternative schemes include using a size field as before, and, if
the allocator places all the storage on a page into a single pool, storing the
size of the blocks in a page in the first word of the page.

Debugging Help

Programs written with explicit allocation and deallocation are notoriously
difficult to debug. It appears that programmers have difficulty deciding
when to free heap-allocated objects. If the allocator can quickly dis-
tinguish between an allocated object and a free object, then the heap-
management software can provide the programmer with some help in
debugging.

For example, to coalesce adjacent free blocks, the allocator needs a pointer
from the end of a block back to its head. If an allocated block has that pointer
set to an invalid value, then the deallocation routine can check that field
and report a runtime error when the program attempts to deallocate a free
block or an illegal address—a pointer to anything other than the start of an
allocated block.

For a modest additional overhead, heap-management software can provide
additional help. By linking together allocated blocks, the allocator can create
an environment for memory-allocation debugging tools. A snapshot tool can
walk the list of allocated blocks. Tagging blocks by the call site that created
them lets the tool expose memory leaks. Timestamping them allows the tool
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to provide the programmer with detailed information about memory use.
Tools of this sort can provide invaluable help in locating blocks that are
never deallocated.

6.6.2 Implicit Deallocation

Many programming languages support implicit deallocation of heap objects.

The implementation deallocates memory objects automatically when they

are no longer in use. This requires some care in the implementation of

both the allocator and the compiled code. To perform implicit deallocation,

or garbage collection, the compiler and runtime system must include a  Garbage collection

mechanism for determining when an object is no longer of interest, or dead,  theimplicitdeallocation of objects that reside on
and a mechanism for reclaiming and recycling the dead space. the runtime heap

The work associated with garbage collection can be performed incremen-
tally, for individual statements, or it can be performed as a batch-oriented
task that runs on demand, when the free-space pool is exhausted. Refer-
ence counting is a classic way to perform incremental garbage collection.
Mark-sweep collection is a classic approach to performing batch-oriented
collection.

Reference Counting

This technique adds a counter to each heap-allocated object. The counter
tracks the number of outstanding pointers that refer to the object. When the
allocator creates the object, it sets the reference count to one. Each assign-
ment to a pointer variable adjusts two reference counts. It decrements the
reference count of the pointer’s preassignment value and increments the
reference count of the pointer’s postassignment value. When an object’s ref-
erence count drops to zero, no pointer exists that can reach the object, so
the system may safely free the object. Freeing an object can, in turn, discard
pointers to other objects. This must decrement the reference counts of those
objects. Thus, discarding the last pointer to an abstract syntax tree should
free the entire tree. When the root node’s reference count drops to zero, it is
freed and its descendant’s reference counts are decremented. This, in turn,
should free the descendants, decrementing the counts of their children. This
process continues until the entire AST has been freed.

The presence of pointers in allocated objects creates problems for reference-
counting schemes, as follows:

1. The running code needs a mechanism to distinguish pointers from other
data. It may either store extra information in the header field for each
object or limit the range of pointers to less than a full word and use the
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remaining bits to “tag” the pointer. Batch collectors face the same
problem and use the same solutions.

2. The amount of work done for a single decrement can grow quite large.
If external constraints require bounded deallocation times, the runtime
system can adopt a more complex protocol that limits the number of
objects deallocated for each pointer assignment. By keeping a queue of
objects that must be freed and limiting the number handled on each
reference-count adjustment, the system can distribute the cost of
freeing objects over a larger set of operations. This amortizes the cost of
freeing over the set of all assignments to heap-allocated objects and
bounds the work done per assignment.

3. The program might form cyclic graphs with pointers. The reference
counts for a cyclic data structure cannot be decremented to zero. When
the last external pointer is discarded, the cycle becomes both
unreachable and nonrecyclable. To ensure that all such objects are freed,
the programmer must break the cycle before discarding the last pointer
to the cycle. (The alternative, to perform reachability analysis on the
pointers at runtime, would make reference counting prohibitively
expensive.) Many categories of heap-allocated objects, such as
variable-length strings and activation records, cannot be involved in
such cycles.

Reference counting incurs additional cost on every pointer assignment. The
amount of work done for a specific pointer assignment can be bounded; in
any well-designed scheme, the total cost can be limited to some constant
factor times the number of pointer assignments executed plus the number
of objects allocated. Proponents of reference counting argue that these over-
heads are small enough and that the pattern of reuse in reference-counting
systems produces good program locality. Opponents of reference count-
ing argue that real programs do more pointer assignments than allocations,
so that garbage collection achieves equivalent functionality with less total
work.

Batch Collectors

Batch collectors consider deallocation only when the free-space pool has
been exhausted. When the allocator fails to find needed space, it invokes
the batch collector. The collector pauses the program’s execution, exam-
ines the pool of allocated memory to discover unused objects, and reclaims

If the collector cannot free any space, then it their space. When the collector terminates, the free-space pool is usually

must request additional space from the system. - onempty. The allocator can finish its original task and return a newly allo-

Ifnone s available, alocation fail. cated object to the caller. (As with reference counting, schemes exist that
perform collection incrementally to amortize the cost over longer periods of
execution.)
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Logically, batch collectors proceed in two phases. The first phase discov-
ers the set of objects that can be reached from pointers stored in program
variables and compiler-generated temporaries. The collector conservatively
assumes that any object reachable in this manner is live and that the remain-
der are dead. The second phase deallocates and recycles dead objects.
Two commonly used techniques are mark-sweep collectors and copying
collectors. They differ in their implementation of the second phase of
collection—recycling.

Identifying Live Data

Collecting allocators discover live objects by using a marking algorithm.
The collector needs a bit for each object in the heap, called a mark bit. This
bit can be stored in the object’s header, alongside tag information used to
record pointer locations or object size. Alternatively, the collector can create
a dense bit map for the heap when needed. The initial step clears all the mark
bits and builds a worklist that contains all the pointers stored in registers and
in variables accessible to current or pending procedures. The second phase
of the algorithm walks forward from these pointers and marks every object
that is reachable from this set of visible pointers.

Figure 6.12 presents a high-level sketch of a marking algorithm. It is a simple
fixed-point computation that halts because the heap is finite and the marks
prevent a pointer contained in the heap from entering the Work1ist more
than once. The cost of marking is, in the worst case, proportional to the
number of pointers contained in program variables and temporaries plus the
size of the heap.

The marking algorithm can be either precise or conservative. The difference
lies in how the algorithm determines that a specific data value is a pointer in
the final line of the whi7e loop.

m In a precise collector, the compiler and runtime system know the type
and layout of each object. This information can be recorded in object
headers, or it can be known implicitly from the type system. Either way,
the marking phase only follows real pointers.

m In a conservative marking phase, the compiler and runtime system may
be unsure about the type and layout of some objects. Thus, when an
object is marked, the system considers each field that may be a possible
pointer. If its value might be a pointer, it is treated as a pointer. Any
value that does not represent a word-aligned address might be excluded,
as might values that fall outside the known boundaries of the heap.

Conservative collectors have limitations. They fail to reclaim some objects
that a precise collector would find. Nonetheless, conservative collectors have
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Clear all marks
Worklist < { pointer values from activation records & registers }

while (Worklist # @)
remove p from the Worklist
if (p—object is unmarked)
mark p—object
add pointers from p—object to Worklist

M FIGURE 6.12 A Simple Marking Algorithm.

been successfully retrofitted into implementations for languages such as ¢
that do not normally support garbage collection.

When the marking algorithm halts, any unmarked object must be unreach-
able from the program. Thus, the second phase of the collector can treat that
object as dead. Some objects marked as live may also be dead. However, the
collector lets them survive because it cannot prove them dead. As the second
phase traverses the heap to collect the garbage, it can reset the mark fields to
“unmarked.” This lets the collector avoid the initial traversal of the heap in
the marking phase.

Mark-Sweep Collectors

Mark-sweep collectors reclaim and recycle objects by making a linear pass
over the heap. The collector adds each unmarked object to the free list (or
one of the free lists), where the allocator will find it and reuse it. With a
single free list, the same collection of techniques used to coalesce blocks
in the first-fit allocator applies. If compaction is desirable, it can be imple-
mented by incrementally shuffling live objects downward during the sweep,
or with a postsweep compaction pass.

Copying Collectors

Copying collectors divide memory into two pools, an old pool and a new
pool. The allocator always operates from the old pool. The simplest type of
copying collector is called stop and copy. When an allocation fails, a stop
and copy collector copies all the live data from the old pool into the new pool
and swaps the identities of the old and new pools. The act of copying live
data compacts it; after collection, all the free space is in a single contiguous
block. Collection can be done in two passes, like mark sweep, or it can be
done incrementally, as live data is discovered. An incremental scheme can
mark objects in the old pool as it copies them to avoid copying the same
object multiple times.

An important family of copying collectors are the generational collectors.
These collectors capitalize on the observation that an object that survives
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one collection is more likely to survive subsequent collections. To capitalize
on this observation, generational collectors periodically repartition their
“new” pool into a “new” and an “old” pool. In this way, successive col-
lections examine only newly allocated objects. Generational schemes vary
in how often they declare a new generation, freezing the surviving objects
and exempting them from the next collection, and whether or not they
periodically re-examine the older generations.

Comparing the Techniques

Garbage collection frees the programmer from needing to worry about when
to release memory and from tracking down the inevitable storage leaks
that result from attempting to manage allocation and deallocation explicitly.
The individual schemes have their strengths and weaknesses. In practice,
the benefits of implicit deallocation outweigh the disadvantages of either
scheme for most applications.

Reference counting distributes the cost of deallocation more evenly across pro-
gram execution than does batch collection. However, it increases the cost of
every assignment that involves a heap-allocated value—even if the program
never runs out of free space. In contrast, batch collectors incur no cost until the
allocator fails to find needed space. At that point, however, the program incurs
the full cost of collection. Thus, any allocation can provoke a collection.

Mark-sweep collectors examine the entire heap, while copying collectors
only examine the live data. Copying collectors actually move every live
object, while mark-sweep collectors leave them in place. The tradeoff
between these costs will vary with the application’s behavior and with the
actual costs of various memory references.

Reference-counting implementations and conservative batch collectors have
problems recognizing cyclic structures, because they cannot distinguish
between references from within the cycle and those from without. The mark-
sweep collectors start from an external set of pointers, so they discover that
a dead cyclic structure is unreachable. The copying collectors, starting from
the same set of pointers, simply fail to copy the objects involved in the cycle.

Copying collectors compact memory as a natural part of the process. The
collector can either update all the stored pointers, or it can require use of
an indirection table for each object access. A precise mark-sweep collector
can compact memory, too. The collector would move objects from one end
of memory into free space at the other end. Again, the collector can either
rewrite the existing pointers or mandate use of an indirection table.

In general, a good implementor can make both mark sweep and copy-
ing work well enough that they are acceptable for most applications. In
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applications that cannot tolerate unpredictable overhead, such as real-time
controllers, the runtime system must incrementalize the process, as the amor-
tized reference-counting scheme does. Such collectors are called real-time
collectors.

6.7 SUMMARY AND PERSPECTIVE

The primary rationale for moving beyond assembly language is to pro-
vide a more abstract programming model and, thus, raise both programmer
productivity and the understandability of programs. Each abstraction that a
programming language supports needs a translation to the target machine’s
instruction set. This chapter has explored the techniques commonly used to
translate some of these abstractions.

Procedural programming was invented early in the history of programming.
Some of the first procedures were debugging routines written for early com-
puters; the availability of these prewritten routines allowed programmers to
understand the runtime state of an errant program. Without such routines,
tasks that we now take for granted, such as examining the contents of a vari-
able or asking for a trace of the call stack, required the programmer to enter
long machine-language sequences without error.

The introduction of lexical scoping in languages like Algol 60 influenced
language design for decades. Most modern programming languages carry
forward some of Algol’s philosophy toward naming and addressability.
Techniques developed to support lexical scoping, such as access links and
displays, reduced the runtime cost of this abstraction. These techniques are
still used today.

Object-oriented languages take the scoping concepts of ALLs and reorient
them in data-directed ways. The compiler for an object-oriented language
uses both compile-time and runtime structures invented for lexical scoping
to implement the naming discipline imposed by the inheritance hierarchy of
a specific program.

Modern languages have added some new twists. By making procedures
first-class objects, languages like Scheme have created new control-
flow paradigms. These require variations on traditional implementation
techniques—for example, heap allocation of activation records. Similarly,
the growing acceptance of implicit deallocation requires occasional conser-
vative treatment of a pointer. If the compiler can exercise a little more care
and free the programmer from ever deallocating storage again, that appears
to be a good tradeoff. (Generations of experience suggest that programmers
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are not effective at freeing all the storage that they allocate. They also free
objects to which they retain pointers.)

As new programming paradigms emerge, they will introduce new abstrac-
tions that require careful thought and implementation. By studying the
successful techniques of the past and understanding the constraints and costs
involved in real implementations, compiler writers will develop strategies
that decrease the runtime penalty for using higher levels of abstraction.

B CHAPTER NOTES

Much of the material in this chapter comes from the accumulated experience
of the compiler-construction community. The best way to learn more about
the name-space structures of various languages is to consult the language
definitions themselves. These documents are a necessary part of a compiler
writer’s library.

Procedures appeared in the earliest high-level languages—that is, lan-
guages that were more abstract than assembly language. FORTRAN [27] and
Algol 60 [273] both had procedures with most of the features found in mod-
ern languages. Object-oriented languages appeared in the late 1960s with
SIMULA 67 [278] followed by Smalltalk 72 [233].

Lexical scoping was introduced in Algol 60 and has persisted to the present
day. The early Algol compilers introduced most of the support mecha-
nisms described in this chapter, including activation records, access links,
and parameter-passing techniques. Much of the material from Sections 6.3
through 6.5 was present in these early systems [293]. Optimizations quickly
appeared, like folding storage for a block-level scope into the containing
procedure’s activation record. The 1BM 370 linkage conventions recognized
the difference between leaf procedures and others; they avoided allocating
a register save area for leaf routines. Murtagh took a more complete and
systematic approach to coalescing activation records [272].

The classic reference on memory allocation schemes is Knuth’s Art of Com-
puter Programming [231, § 2.5]. Modern multipool allocators appeared in
the early 1980s. Reference counting dates to the early 1960s and has been
used in many systems [95, 125]. Cohen and later Wilson, provide broad sur-
veys of the literature on garbage collection [92, 350]. Conservative collec-
tors were introduced by Boehm and Weiser [44, 46, 120]. Copying collectors
appeared in response to virtual memory systems [79, 144]; they led, some-
what naturally, to the generational collectors in widespread use today [247,
337]. Hanson introduced the notion of arena-based allocation [179].
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B EXERCISES

Section 6.2 1. Show the call tree and execution history for the following ¢ program:

int Sub(int i, int j) {
return i - Jj;
}
int Mul(int i, int j) {
return 1 % J;
}
int Delta(int a, int b, int c¢) {
return Sub(Mul(b,b), Mul(Mul(4,a),c));

}

void main() {
int a, b, c, delta;

scanf("%d %d %d", &a, &b, &c);
delta = Delta(a, b, c);
if (delta == 0)

puts("Two equal roots");
else if (delta > 0)

puts("Two different roots");
else

puts("No root");

2. Show the call tree and execution history for the following ¢ program:

void Output(int n, int x) {
printf("The value of %d! is %s.\n", n, x);
}
int Fat(int n) {
int x;
if (n > 1)
X =n x Fat(n - 1);
else
x =1;
Output(n, x);
return x;

}

void main() {
Fat(4);
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3. Consider the following Pascal program, in which only procedure calls Section 6.3
and variable declarations are shown:

1 program Main(input, output);
2 var a, b, ¢ : integer;
3 procedure P4; forward;
4 procedure P1;

5 procedure P2;

6 begin

7 end;

8 var b, d, f : integer;
9 procedure P3;

10 var a, b : integer;
11 begin

12 P2;

13 end;

14 begin

15 P2;

16 P4;

17 P3;

18 end;

19 var d, e : integer;

20 procedure P4;

21 var a, ¢, g : integer;
22 procedure P5;

23 var ¢, d : integer;
24 begin

25 P1;

26 end;

27 var d : integer;

28 begin

29 P1;

30 P5;

31 end;

32 begin

33 P1;

34 P4,

35 end.

a. Construct a static coordinate table, similar to the one in Figure 6.3.
b. Construct a graph to show the nesting relationships in the program.
c. Construct a graph to show the calling relationships in the program.
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4. Some programming languages allow the programmer to use functions
in the initialization of local variables but not in the initialization of
global variables.

a. Is there an implementation rationale to explain this seeming quirk
of the language definition?

b. What mechanisms would be needed to allow initialization of a
global variable with the result of a function call?

5. The compiler writer can optimize the allocation of ARs in several

ways. For example, the compiler might:

a. Allocate Ars for leaf procedures statically.

b. Combine the ARs for procedures that are always called together.
(When « is called, it always calls 8.)

c. Use an arena-style allocator in place of heap allocation of ARs.

For each scheme, consider the following questions:

a. What fraction of the calls might benefit? In the best case? In the
worst case?

b. What is the impact on runtime space utilization?

6. Draw the structures that the compiler would need to create to support
an object of type Dumbo, defined as follows:

class Elephant {
private int Length;
private int Weight;
static int type;

public int Getlen();
public int GetTyp();

class Dumbo extends Elephant {
private int EarSize;
private boolean Fly;

public boolean CanFly();
}

7. In aprogramming language with an open class structure, the number
of method invocations that need runtime name resolution, or dynamic
dispatch, can be large. A method cache, as described in Section 6.3.4,
can reduce the runtime cost of these lookups by short-circuiting them.
As an alternative to a global method cache, the implementation might
maintain a single entry method cache at each call site—an inline
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1 procedure main;

2 var a : array[l...3] of int;
3 i oint;

4 procedure p2(e : int);
5 begin

6 e 1= e + 3;

7 ali] := 5;

8 ii=2;

9 e 1=e + 4;

10 end;

11 begin

12 a :=[1, 10, 771;

13 i=1;

14 p2(alil);

15 for i :=1 to 3 do
16 print(ali])

17 end.

M FIGURE 6.13 Program for Problem 8.

method cache that records record the address of the method most
recently dispatched from that site, along with its class.

Develop pseudocode to use and maintain such an inline method cache.
Explain the initialization of the inline method caches and any
modifications to the general method lookup routine required to
support inline method caches.

8. Consider the program written in Pascal-like pseudo code shown in Section 6.4
Figure 6.13. Simulate its execution under call-by-value,
call-by-reference, call-by-name, and call-by-value-result parameter
binding rules. Show the results of the print statements in each case.

9. The possibility that two distinct variables refer to the same object
(memory area) is considered undesirable in programming languages.
Consider the following Pascal procedure, with parameters passed by
reference:

procedure mystery(var x, y : integer);

begin

X =X +y;
y =X -y
X =X -Yy;

end;
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1 program main(input, output);

2 procedure P1( function g(b: integer): integer);

3 var a: integer;

4 begin

5 a := 3;

6 writeln(g(2)) Local Variables
7 end;

8 procedure P2; Access Link

9 var a: integer: ARP Return Address
10 function F1(b: integer): integer;

11 begin Argument 1

12 Fl1 :=a +b

13 end;

14 procedure P3; Argument n
15 var a:integer;

16 begin (b) Activation Record Structure
17 a = 7;

18 P1(F1) ARP Access Link(0)
19 end; Return Address(0)
20 begin
21 a:=0; (c) Initial Activation Record
22 P3
23 end;
24 begin
25 P2
26 end.

(a) Example Pascal Program

M FIGURE 6.14 Program for Problem 10.

If no overflow or underflow occurs during the arithmetic operations:

a. What result does mystery produce when it is called with two
distinct variables, a and b?

b. What would be the expected result if mystery is invoked with a
single variable a passed to both parameters? What is the actual
result in this case?

Section 6.5 10. Consider the Pascal program shown in Figure 6.14a. Suppose that the
implementation uses ARs as shown in Figure 6.14b. (Some fields have
been omitted for simplicity.) The implementation stack allocates
the ARs, with the stack growing toward the top of the page. The AR is
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the only pointer to the AR, so access links are previous values of the
ARP. Finally, Figure 6.14c shows the initial AR for a computation.

For the example program in Figure 6.14a, draw the set of its ARs just
prior to the return from function F1. Include all entries in the ARs. Use
line numbers for return addresses. Draw directed arcs for access links.
Label the values of local variables and parameters. Label each AR with
its procedure name.

11. Assume that the compiler is capable of analyzing the code to
determine facts such as “from this point on, variable v is not used
again in this procedure” or “variable v has its next use in line 11 of
this procedure,” and that the compiler keeps all local variables in
registers for the following three procedures:

procedure main
integer a, b, ¢
b=a+c;
c = fl(a,b);
call print(c);
end;

procedure fl(integer x, y)
integer v;
V=X % Y
call print(v);
call f2(v);
return -x;
end;

procedure f2(integer q)
integer k, r;

k=q/ r;
end;

a. Variable x in procedure f1 is live across two procedure calls. For
the fastest execution of the compiled code, should the compiler
keep it in a caller-saves or callee-saves register? Justify your
answer.

b. Consider variables a and c in procedure main. Should the compiler
keep them in caller-saves or callee-saves registers, again assuming
that the compiler is trying to maximize the speed of the compiled
code? Justify your answer.



330 CHAPTER 6 The Procedure Abstraction

12. Consider the following Pascal program. Assume that the ARs follow
the same layout as in problem 10,with the same initial condition,
except that the implementation uses a global display rather than access

links.
1 program main(input, output);
2 var x : integer;
3 a : float;
4 procedure pl();
5 var g:character;
6 begin
7
8 end;
9 procedure p2();
10 var h:character;
11 procedure p3();
12 var h,i:integer;
13 begin
14 pl();
15 end;
16 begin
17 p3();
18 end;
19 begin
20 p2();
21 end

Draw the set of ARrs that are on the runtime stack when the program
reaches line 7 in procedure p1.
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B CHAPTER OVERVIEW

To translate an application program, the compiler must map each source-
language statement into a sequence of one or more operations in the target
machine’s instruction set. The compiler must chose among many alternative
ways to implement each construct. Those choices have a strong and direct
impact on the quality of the code that the compiler eventually produces.

This chapter explores some of the implementation strategies that the
compiler can employ for a variety of common programming-language
constructs.

Keywords: Code Generation, Control Structures, Expression Evaluation

7.1 INTRODUCTION

When the compiler translates application code into executable form, it faces
myriad choices about specific details, such as the organization of the compu-
tation and the location of data. Such decisions often affect the performance
of the resulting code. The compiler’s decisions are guided by information
that it derives over the course of translation. When information is discovered
in one pass and used in another, the compiler must record that information
for its own later use.

Often, compilers encode facts in the 1R form of the program—facts that are
hard to re-derive unless they are encoded. For example, the compiler might
generate the IR so that every scalar variable that can safely reside in a regis-
ter is stored in a virtual register. In this scheme, the register allocator’s job
is to decide which virtual registers it should demote to memory. The alterna-
tive, generating the IR with scalar variables stored in memory and having the
allocator promote them into registers, requires much more complex analysis.

Engineering a Compiler. DOI: 10.1016/B978-0-12-088478-0.00007-4
Copyright © 2012, Elsevier Inc. All rights reserved.
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Encoding knowledge into the IR name space in this way both simplifies the
later passes and improves the compiler’s effectiveness and efficiency.

Conceptual Roadmap

The translation of source code constructs into target-machine operations is
one of the fundamental acts of compilation. The compiler must produce tar-
get code for each source-language construct. Many of the same issues arise
when generating IR in the compiler’s front end and generating assembly code
for a real processor in its back end. The target processor may, due to finite
resources and idiosyncratic features, present a more difficult problem, but
the principles are the same.

This chapter focuses on ways to implement various source-language con-
structs. In many cases, specific details of the implementation affect the
compiler’s ability to analyze and to improve the code in later passes. The
concept of “code shape” encapsulates all of the decisions, large and small,
that the compiler writer makes about how to represent the computation in
both 1R and assembly code. Careful attention to code shape can both sim-
plify the task of analyzing and improving the code, and improve the quality
of the final code that the compiler produces.

Overview

In general, the compiler writer should focus on shaping the code so that the
various passes in the compiler can combine to produce outstanding code. In
practice, a compiler can implement most source-language constructs many
ways on a given processor. These variations use different operations and
different approaches. Some of these implementations are faster than others;
some use less memory; some use fewer registers; some might consume less
energy during execution. We consider these differences to be matters of code
shape.

Code shape has a strong impact both on the behavior of the compiled code
and on the ability of the optimizer and back end to improve it. Consider,
for example, the way that a ¢ compiler might implement a switch state-
ment that switched on a single-byte character value. The compiler might
use a cascaded series of 1 f—then—else statements to implement the switch
statement. Depending on the layout of the tests, this could produce differ-
ent results. If the first test is for zero, the second for one, and so on, then
this approach devolves to linear search over a field of 256 keys. If charac-
ters are uniformly distributed, the character searches will require an average
of 128 tests and branches per character—an expensive way to implement a
case statement. If, instead, the tests perform a binary search, the average case
would involve eight tests and branches, a more palatable number. To trade
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data space for speed, the compiler can construct a table of 256 labels and
interpret the character by loading the corresponding table entry and jumping
to it—with a constant overhead per character.

All of these are legal implementations of the switch statement. Deciding
which one makes sense for a particular switch statement depends on many
factors. In particular, the number of cases and their relative execution fre-
quencies are important, as is detailed knowledge of the cost structure for
branching on the processor. Even when the compiler cannot determine the
information that it needs to make the best choice, it must make a choice. The
differences among the possible implementations, and the compiler’s choice,
are matters of code shape.

As another example, consider the simple expression x+y+z, where x, vy,
and z are integers. Figure 7.1 shows several ways of implementing this
expression. In source-code form, we may think of the operation as a ternary
add, shown on the left. However, mapping this idealized operation into a
sequence of binary additions exposes the impact of evaluation order. The
three versions on the right show three possible evaluation orders, both as
three-address code and as abstract syntax trees. (We assume that each vari-
able is in an appropriately named register and that the source language does
not specify the evaluation order for such an expression.) Because integer
addition is both commutative and associative, all the orders are equivalent;
the compiler must choose one to implement.

Left associativity would produce the first binary tree. This tree seems “nat-
ural” in that left associativity corresponds to our left-to-right reading style.
Consider what happens if we replace y with the literal constant 2 and z with
3. Of course, x+2+3 is equivalent to x +5. The compiler should detect the
computation of 2+ 3, evaluate it, and fold the result directly into the code.
In the left-associative form, however, 2 + 3 never occurs. The order x+z+y
hides it, as well. The right-associative version exposes the opportunity for
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improvement. For each prospective tree, however, there is an assignment
of variables and constants to x, y, and z that does not expose the constant
expression for optimization.

As with the switch statement, the compiler cannot choose the best shape
for this expression without understanding the context in which it appears.
If, for example, the expression x +y has been computed recently and neither
the values of x nor y have changed, then using the leftmost shape would let
the compiler replace the first operation, ri < ry +ry, with a reference to
the previously computed value. Often, the best evaluation order depends on
context from the surrounding code.

This chapter explores the code-shape issues that arise in implementing
many common source-language constructs. It focuses on the code that
should be generated for specific constructs, while largely ignoring the algo-
rithms required to pick specific assembly-language instructions. The issues
of instruction selection, register allocation, and instruction scheduling are
treated separately, in later chapters.

7.2 ASSIGNING STORAGE LOCATIONS

As part of translation, the compiler must assign a storage location to each
value produced by the code. The compiler must understand the value’s type,
its size, its visibility, and its lifetime. The compiler must take into account
the runtime layout of memory, any source-language constraints on the layout
of data areas and data structures, and any target-processor constraints on
placement or use of data. The compiler addresses these issues by defining
and following a set of conventions.

A typical procedure computes many values. Some of them, such as vari-
ables in an Algol-like language, have explicit names in the source code.
Other values have implicit names, such as the value i - 3 in the expression
Al1-3,+2].

m The lifetime of a named value is defined by source-language rules and
actual use in the code. For example, a static variable’s value must be
preserved across multiple invocations of its defining procedure, while a
local variable of the same procedure is only needed from its first
definition to its last use in each invocation.

m In contrast, the compiler has more freedom in how it treats unnamed
values, such as i - 3. It must handle them in ways that are consistent
with the meaning of the program, but it has great leeway in determining
where these values reside and how long to retain them.
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Compilation options may also affect placement; for example, code compiled
to work with a debugger should preserve all values that the debugger can
name—typically named variables.

The compiler must also decide, for each value, whether to keep it in a register
or to keep it in memory. In general, compilers adopt a “memory model”’—a
set of rules to guide it in choosing locations for values. Two common policies
are a memory-to-memory model and a register-to-register model. The choice
between them has a major impact on the code that the compiler produces.

With a memory-to-memory model, the compiler assumes that all values

reside in memory. Values are loaded into registers as needed, but the code

stores them back to memory after each definition. In a memory-to-memory

model, the IR typically uses physical register names. The compiler ensures  Physical register

that demand for registers does not exceed supply at each statement. anamed register in the target Isa

In a register-to-register model, the compiler assumes that it has enough regis-

ters to express the computation. It invents a distinct name, a virtual register,  Virtual register

for each value that can legally reside in a register. The compiled code will ~ asymbolicname used in the IRin place of a
store a virtual register’s value to memory only when absolutely necessary, ~ Physical registername
such as when it is passed as a parameter or a return value, or when the

register allocator spills it.

Choice of memory model also affects the compiler’s structure. For example,
in a memory-to-memory model, the register allocator is an optimization that
improves the code. In a register-to-register memory model, the register allo-
cator is a mandatory phase that reduces demand for registers and maps the
virtual register names onto physical register names.

7.2.1 Placing Runtime Data Structures

To perform storage assignment, the compiler must understand the system-
wide conventions on memory allocation and use. The compiler, the operating
system, and the processor cooperate to ensure that multiple programs can
execute safely on an interleaved (time-sliced) basis. Thus, many of the deci-
sions about how to lay out, manipulate, and manage a program’s address
space lie outside the purview of the compiler writer. However, the deci-
sions have a strong impact on the code that the compiler generates. Thus,
the compiler writer must have a broad understanding of these issues.

Figure 7.2 shows a typical layout for the address space used by a single com-

piled program. The layout places fixed size regions of code and data at the

low end of the address space. Code sits at the bottom of the address space;  1p, compiler may create additional static data
the adjacent region, labelled Static, holds both static and global data areas,  areas to hold constant values, jump tables, and
along with any fixed size data created by the compiler. The region above  debugginginformation.
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these static data areas is devoted to data areas that expand and contract. If
the compiler can stack-allocate ARrs, it will need a runtime stack. In most lan-
guages, it will also need a heap for dynamically allocated data structures. To
allow for efficient space utilization, the heap and the stack should be placed
at opposite ends of the open space and grow towards each other. In the draw-
ing, the heap grows toward higher addresses, while the stack grows toward
lower addresses. The opposite arrangement works equally well.

From the compiler’s perspective, this logical address space is the whole
picture. However, modern computer systems typically execute many pro-
grams in an interleaved fashion. The operating system maps multiple logical
address spaces into the single physical address space supported by the pro-
cessor. Figure 7.3 shows this larger picture. Each program is isolated in its
own logical address space; each can behave as if it has its own machine.

Page A single logical address space can occupy disjoint pages in the physical
the unit of allocation in a virtual address space address space; thus, the addresses 100,000 and 200,000 in the program’s log-
The operating system maps virtual pages into ical address space need not be 100,000 bytes apart in physical memory. In
physical page frames. fact, the physical address associated with the logical address 100,000 may be

larger than the physical address associated with the logical address 200,000.
The mapping from logical addresses to physical addresses is maintained
cooperatively by the hardware and the operating system. It is, in almost all
respects, beyond the compiler’s purview.

7.2.2 Layout for Data Areas

For convenience, the compiler groups together the storage for values with
the same lifetimes and visibility; it creates distinct data areas for them. The
placement of these data areas depends on language rules about lifetimes
and visibility of values. For example, the compiler can place procedure-
local automatic storage inside the procedure’s activation record, precisely
because the lifetimes of such variables matches the AR’s lifetime. In contrast,
it must place procedure-local static storage where it will exist across
invocations—in the “static” region of memory. Figure 7.4 shows a typical
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if x is declared locally in procedure p, and
its value is not preserved across distinct invocations of p
then assign it to procedure-local storage

if its value is preserved across invocations of p
then assign it to procedure-local static storage

if x is declared as globally visible
then assign it to global storage

if x 1s allocated under program control
then assign it to the runtime heap

M FIGURE 7.4 Assigning Names to Data Areas.

set of rules for assigning a variable to a specific data area. Object-oriented
languages follow different rules, but the problems are no more complex.

Placing local automatic variables in the AR leads to efficient access. Since

the code already needs the ARP in a register, it can use ARP-relative offsets

to access these values, with operations such as 1oadAI or 10adAQ. Frequent

access to the AR will likely keep it in the data cache. The compiler places  To establish the address of a static or global data
variables with either static lifetimes or global visibility into data areas in the  area, the compiler typically loads a relocatable
“static” region of memory. Access to these values takes slightly more work ~ assemblylanguage label.

at runtime; the compiler must ensure that it has an address for the data area

in a register.

Values stored in the heap have lifetimes that the compiler cannot easily
predict. A value can be placed in the heap by two distinct mechanisms.
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A PRIMER ON CACHE MEMORIES

One way that architects try to bridge the gap between processor speed and
memory speed is through the use of cache memories. A cache is a small,
fast memory placed between the processor and main memory. The cache
is divided into a series of equal-sized frames. Each frame has an address
field, called its tag, that holds a main-memory address.

The hardware automatically maps memory locations to cache frames. The
simplest mapping, used in a direct-mapped cache, computes the cache
address as the main memory address modulo the size of the cache. This
partitions the memory into a linear set of blocks, each the size of a cache
frame. A line is a memory block that maps to a frame. At any point in time,
each cache frame holds a copy of the data from one of its blocks. Its tag
field holds the address in memory where that data normally resides.

On each read access to memory, the hardware checks to see if the
requested word is already in its cache frame. If so, the requested bytes
are returned to the processor. If not, the block currently in the frame is
evicted and the requested block is brought into the cache.

Some caches use more complex mappings. A set-associative cache uses
multiple frames for each cache line, typically two or four frames per line.
A fully associative cache can place any block in any frame. Both these
schemes use an associative search over the tags to determine if a block is
in the cache. Associative schemes use a policy to determine which block to
evict; common schemes are random replacement and least-recently-used
(LRU) replacement.

In practice, the effective memory speed is determined by memory band-
width, cache block length, the ratio of cache speed to memory speed,
and the percentage of accesses that hit in the cache. From the compiler’s
perspective, the first three are fixed. Compiler-based efforts to improve
memory performance focus on increasing the ratio of cache hits to cache
misses, called the hit ratio.

Some architectures provide instructions that allow a program to give the
cache hints as to when specific blocks should be brought into memory
(prefetched) and when they are no longer needed (flushed).

The programmer can explicitly allocate storage from the heap; the compiler
should not override that decision. The compiler can place a value on the heap
when it detects that the value might outlive the procedure that created it. In
either case, a value in the heap is represented by a full address, rather than
an offset from some base address.
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Assigning Offsets

In the case of local, static, and global data areas, the compiler must assign
each name an offset inside the data area. Target 1SAs constrain the place-
ment of data items in memory. A typical set of constraints might specify
that 32-bit integers and 32-bit floating-point numbers begin on word (32-bit)
boundaries, that 64-bit integer and floating-point data begin on doubleword
(64-bit) boundaries, and that string data begin on halfword (16-bit) bound-
aries. We call these alignment rules.

Some processors provide operations to implement procedure calls beyond
a simple jump operation. Such support often adds further alignment con-
straints. For example, the 1SA might dictate the format of the AR and the
alignment of the start of each AR. The DEC vAX computers had a particularly
elaborate call instruction; it stored registers and other parts of the processor
state based on a call-specific bit mask that the compiler produced.

For each data area, the compiler must compute a layout that assigns each
variable in the data area its offset. That layout must comply with the ISA’s

alignment rules. The compiler may need to insert padding between some  Mostassembly languages have directives to
specify the alignment of the start of a data area,

variables to obtain the proper alignments. To minimize wasted space, the
such as a doubleword boundary.

compiler should order the variables into groups, from those with the most
restrictive alignment rules to those with the least. (For example, double-
word alignment is more restrictive than word alignment.) The compiler then
assigns offsets to the variables in the most restricted category, followed by
the next most restricted class, and so on, until all variables have offsets.
Since alignment rules almost always specify a power of two, the end of each
category will naturally fit the restriction for the next category.

Relative Offsets and Cache Performance

The widespread use of cache memories in modern computer systems has
subtle implications for the layout of variables in memory. If two values are
used in proximity in the code, the compiler would like to ensure that they can
reside in the cache at the same time. This can be accomplished in two ways.
In the best situation, the two values would share a single cache block, which
guarantees that the values are fetched from memory to the cache together. If
they cannot share a cache block, the compiler would like to ensure that the
two variables map to different cache lines. The compiler can achieve this by
controlling the distance between their addresses.

If we consider just two variables, controlling the distance between them
seems manageable. When all the active variables are considered, how-
ever, the problem of optimal arrangement for a cache is NP-complete. Most
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variables have interactions with many other variables; this creates a web of
relationships that the compiler may not be able to satisfy concurrently. If
we consider a loop that uses several large arrays, the problem of arranging
mutual noninterference becomes even worse. If the compiler can discover
the relationship between the various array references in the loop, it can add
padding between the arrays to increase the likelihood that the references hit
different cache lines and, thus, do not interfere with each other.

As we saw previously, the mapping of the program’s logical address space
to the hardware’s physical address space need not preserve the distance
between specific variables. Carrying this thought to its logical conclusion,
the reader should ask how the compiler can ensure anything about relative
offsets that are larger than the size of a virtual-memory page. The proces-
sor’s cache may use either virtual addresses or physical addresses in its
tag fields. A virtually addressed cache preserves the spacing between val-
ues that the compiler creates; with such a cache, the compiler may be able
to plan noninterference between large objects. With a physically addressed
cache, the distance between two locations in different pages is determined
by the page mapping (unless cache size < page size). Thus, the compiler’s
decisions about memory layout have little, if any, effect, except within a
single page. In this situation, the compiler should focus on getting objects
that are referenced together into the same page and, if possible, the same
cache line.

7.2.3 Keeping Values in Registers

In a register-to-register memory model, the compiler tries to assign as many
values as possible to virtual registers. In this approach, the compiler relies on
the register allocator to map virtual registers in the IR to physical registers

Spill on the processor and to spill to memory any virtual register that it cannot
When the register allocator cannot assign some keep in a physical register. If the compiler keeps a static value in a register,
virtual register to aphysical register, it spillsthe - j¢ mugt load the value before its first use in the procedure and store it back

value by storing it to RAM after each definition
and loading itinto a temporary register before
each use.

to memory before leaving the procedure, either at the procedure’s exit or at
any call site within the procedure.

In most of the examples in this book, we follow a simple method for assign-
ing virtual registers to values. Each value receives its own virtual register
with a distinct subscript. This discipline exposes the largest set of values to
subsequent analysis and optimization. It may, in fact, use too many names.
(See the digression, “The Impact of Naming” on page 248.) However, this
scheme has three principal advantages. It is simple. It can improve the
results of analysis and optimization. It prevents the compiler writer from
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working processor-specific constraints into the code before optimization,
thus enhancing portability. A strong register allocator can manage the name
space and tailor it precisely to the needs of the application and the resources
available on the target processor.

A value that the compiler can keep in a register is called an unambiguous  Unambiguous value
value; a value that can have more than one name is called an ambigu-  Avaluethatcanbe accessed with just one name
ous value. Ambiguity arises in several ways. Values stored in pointer-based s unambiguous.

variables are often ambiguous. Interactions between call-by-reference for- ~ Ambiguous value
Any value that can be accessed by multiple

mal parameters and name scoping rules can make the formal parameters
names is ambiguous.

ambiguous. Many compilers treat array-element values as ambiguous val-
ues because the compiler cannot tell if two references, such as A[i,j] and
ALm,n1J, can ever refer to the same location. In general, the compiler cannot
keep an ambiguous value in a register across either a definition or a use of
another ambiguous value.

With careful analysis, the compiler can disambiguate some of these cases.

Consider the sequence of assignments in the margin, assuming that both a

and b are ambiguous. If a and b refer to the same location, then ¢ gets the | _ . | n:
value 26; otherwise it receives m+n+13. The compiler cannot keep aina b « 13;
register across an assignment to another ambiguous variable unless it can € < a + b;
prove that the set of locations to which the two names can refer are disjoint.

This kind of comparative pairwise analysis is expensive, so compilers typi-

cally relegate ambiguous values to memory, with a load before each use and

a store after each definition.

Analysis of ambiguity therefore focuses on proving that a given value is not
ambiguous. The analysis might be cursory and local. For example, in ¢, any
local variable whose address is never taken is unambiguous in the procedure
where it is declared. More complex analyses build sets of possible names
for each pointer variable; any variable whose set has just one element is
unambiguous. Unfortunately, analysis cannot resolve all ambiguities. Thus,
the compiler must be prepared to handle ambiguous values cautiously and
correctly.

Language features can affect the compiler’s ability to analyze ambiguity. For
example, ANsI € includes two keywords that directly communicate informa-
tion about ambiguity. The restrict keyword informs the compiler that a
pointer is unambiguous. It is often used when a procedure passes an address
directly at a call site. The volatile keyword lets the programmer declare
that the contents of a variable may change arbitrarily and without notice. It is
used for hardware device registers and for variables that might be modified
by interrupt service routines or other threads of control in an application.
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SECTION REVIEW

The compiler must determine, for each value computed in the program,
where it must be stored: in memory or a register and, in either case, the
specific location. It must assign to each value a location that is consistent
with both its lifetime (see Section 6.3) and its addressability (see Section
6.4.3). Thus, the compiler will group together values into data areas in
which each value has the same storage class.

Storage assignment provides the compiler with a key opportunity to
encode information into the IR for use by later passes. Specifically, the
distinction between an ambiguous value and an unambiguous value can
be hard to derive by analysis of the IR. If, however, the compiler assigns
each unambiguous value its own virtual register for its entire lifetime,
subsequent phases of the compiler can use a value's storage location

to determine whether or not a reference is ambiguous. This knowledge
simplifies subsequent optimization.

[
Review Questions

void fee()
¢ 1. Sketch an algorithm that assigns offsets to a list of static variables in

mnt . @, b a single file from a C program. How does it order the variables? What
b = &a; alignment restrictions might your algorithm encounter?
| 2. Consider the short C fragment in the margin. It mentions three values:
a, b, and *b. Which values are ambiguous? Which are unambiguous?
|

7.3 ARITHMETIC OPERATORS

Modern processors provide broad support for evaluating expressions. A
typical risCc machine has a full complement of three-address operations,
including arithmetic operators, shifts, and boolean operators. The three-
address form lets the compiler name the result of any operation and preserve
it for later reuse. It also eliminates the major complication of the two-address
form: destructive operations.

To generate code for a trivial expression, such as a+b, the compiler first
emits code to ensure that the values of a and b are in registers, say r and
rp. If a is stored in memory at offset @a in the current AR, the resulting code
might be

loadl @a = r]
10adAQ rarp,ri = ra
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If, however, the value of a is already in a register, the compiler can sim-
ply use that register in place of r,. The compiler follows a similar chain
of decisions for b. Finally, it emits an instruction to perform the addition,
such as

add ra,rp = rt

If the expression is represented in a tree-like IR, this process fits into a post-
order tree walk. Figure 7.5a shows the code for a tree walk that generates
code for simple expressions. It relies on two routines, base and offset, to
hide some of the complexity. The base routine returns the name of a register
holding the base address for an identifier; if needed, it emits code to get that
address into a register. The offset routine has a similar function; it returns
the name of a register holding the identifier’s offset relative to the address
returned by base.

expr(node) {
int result, tl, t2;
switch(type(node)) {

case X, =, +, -: -

tl <« expr(LeftChild(node)); / \

t2 < expr(RightChild(node)); ° /X\
result < NextRegister(); b c

emit(op(node), tl, t2, result);
(b) Abstract Syntax Tree for

break;
a-bxc
case IDENT:
tl <« base(node);
t2 < offset(node);
result < NextRegister();
emit(loadAO, tl1, t2, result);
break;
case NUM: loadl @a = r
result < NextRegister(); 10adAO rarp.riy = r
emit(loadl, val(node), none, loadl @b = r3
result); ToadAQ rarp, rz = ry
break; loadl @c = rs
} 1oadAO rarp,rs = rg
return result; mult  ra.re = r7
} sub ro,rz7 = rg
(a) Treewalk Code Generator (c) Naive Code

M FIGURE 7.5 Simple Treewalk Code Generator for Expressions.
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The same code handles +, -, X, and +. From a code-generation perspective,
these operators are interchangeable, ignoring commutativity. Invoking the
routine expr from Figure 7.5a on the AsT for a - b x ¢ shown in part b of
the figure produces the results shown in part ¢ of the figure. The example
assumes that a, b, and c are not already in registers and that each resides in
the current AR.

Notice the similarity between the treewalk code generator and the ad hoc
syntax-directed translation scheme shown in Figure 4.15. The treewalk
makes more details explicit, including the handling of terminals and the
evaluation order for subtrees. In the syntax-directed translation scheme, the
order of evaluation is controlled by the parser. Still, the two schemes produce
roughly equivalent code.

7.3.1 Reducing Demand for Registers

Many issues affect the quality of the generated code. For example, the choice
of storage locations has a direct impact, even for this simple expression. If
a were in a global data area, the sequence of instructions needed to get a
into a register might require an additional 10adI to obtain the base address
and a register to hold that value for a brief time. Alternatively, if a were
in a register, the two instructions used to load it into r» could be omitted,
and the compiler would use the name of the register holding a directly in
the sub instruction. Keeping the value in a register avoids both the memory
access and any address calculation. If a, b, and ¢ were already in regis-
ters, the seven-instruction sequence could be shortened to a two-instruction
sequence.

Code-shape decisions encoded into the treewalk code generator have an
effect on demand for registers. The naive code in the figure uses eight reg-
isters, plus rapp. It is tempting to assume that the register allocator, when
it runs late in compilation, can reduce the number of registers to a mini-
mum. For example, the register allocator could rewrite the code as shown in
Figure 7.6a, which drops register use from eight registers to three, plus rarp.
The maximum demand for registers occurs in the sequence that loads ¢ and
performs the multiply.

A different code shape can reduce the demand for registers. The treewalk
code generator loads a before it computes b x c, an artifact of the decision to
use a left-to-right tree walk. Using a right-to-left tree walk would produce
the code shown in Figure 7.6b. While the initial code uses the same number
of registers as the code generated left-to-right, register allocation reveals that
the code actually needs one fewer registers, as shown in Figure 7.6c.
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loadl (@a = r loadl @c = r loadl @c = r
ToadAO rarp,r1 = r 10adAO rapp,ri = rp ToadAQ rarp,ri = rp
loadl @b = rp loadl @b = rj loadl @b = rp
ToadA0 rarp,r2 = r» 10adA0 rarp, rz = rg 10adA0 rarp,rz = ro
loadl @c = rj mult ro,rqg = rg mult ri,rp = r
ToadAO rarp,r3 = r3 loadl @a = rg loadl @a = ry
mult ro,rs = rp 10adA0 rarp,re = ry 1oadAO rarp,rz = ro
sub ry,rp = ry sub rz,rs = rg sub ro,rp = ri
(a) Example After Allocation (b) Evaluating b x c First (c) After Register Allocation

M FIGURE 7.6 Rewritinga - b x c toReduce Demand for Registers.

Of course, right-to-left evaluation is not a general solution. For the expres-
sion a x b+ c, left-to-right evaluation produces the lower demand for regis-
ters. Some expressions, such as a+ (b+c) x d, defy a simple static rule. The
evaluation order that minimizes register demand is a + ( (b+c) xd).

To choose an evaluation order that reduces demand for registers, the code

generator must alternate between right and left children; it needs information

about the detailed register needs of each subtree. As a rule, the compiler can

minimize register use by evaluating first, at each node, the subtree that needs

the most registers. The generated code must preserve the value of the first

subtree that it evaluates across the evaluation of the second subtree; thus,

handling the less demanding subtree first increases the demand for registers

in the more demanding subtree by one register. This approach requires an  1hi approach, analysis followed by

initial pass over the code to compute demand for registers, followed by a  transformation, applies in both code generation
pass that emits the actual code. and optimization [150].

7.3.2 Accessing Parameter Values

The code generator in Figure 7.5 implicitly assumes that a single access
method works for all identifiers. Formal parameters may need different treat-
ment. A call-by-value parameter passed in the AR can be handled as if it were
a local variable. A call-by-reference parameter passed in the AR requires
one additional indirection. Thus, for the call-by-reference parameter d, the
compiler might generate

loadl @d = r
10adA0 rarp,ri1 = rp
load ro = r3

to obtain d’s value. The first two operations move the address of the
parameter’s value into rp. The final operation moves the value itself into r3.
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GENERATING LOAD ADDRESS IMMEDIATE

A careful reader might notice that the code in Figure 7.5 never generates
ILOC's load address-immediate instruction, 1oadAl. Instead, it generates a
load immediate (1o0adI), followed by a load address-offset (10adA0):

loadl @a =

10adA0 rarp, 1 = rp instead of 10adAl rarp,@ = r)

Throughout the book, the examples assume that it is preferable to gener-
ate this two-operation sequence, rather than the single operation. Three
factors suggest this course.

1. The longer code sequence gives an explicit name to @a. If @a is reused
in other contexts, that name can be reused.

2. The offset@a may not fit in the immediate field of a ToadAI. That
determination is best made in the instruction selector.

3. The two-operation sequence leads to a clean functional
decomposition in the code generator, shown Figure 7.5.

The compiler can convert the two-operation sequence into a single oper-
ation during optimization, if appropriate (e.g. either @a is not reused or
it is cheaper to reload it). The best course, however, may be to defer the
issue to instruction selection, thus isolating the machine-dependent con-
stant length into a part of the compiler that is already highly machine
dependent.

If the compiler writer wants to generate the 1oadATl earlier, two simple
approaches work. The compiler writer can refactor the treewalk code gen-
erator in Figure 7.5 and pull the logic hidden in base and offset into the
case for IDENT. Alternatively, the compiler writer can have emit maintain
a smallinstruction buffer, recognize this special case, and emit the ToadAT.
Using a small buffer makes this approach practical (see Section 11.5).

Many linkage conventions pass the first few parameters in registers. As
written, the code in Figure 7.5 cannot handle a value that is permanently kept
in a register. The necessary extensions, however, are easy to implement.

m  Call-by-value parameters The IDENT case must check if the value is
already in a register. If so, it just assigns the register number to result.
Otherwise, it uses the standard mechanisms to load the value from
memory.

m  Call-by-reference parameter 1If the address resides in a register, the
compiler simply loads the value into a register. If the address resides in
the AR, it must load the address before it loads the value.
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COMMUTATIVITY, ASSOCIATIVITY, AND NUMBER SYSTEMS

The compiler can often take advantage of algebraic properties of the oper-
ators. Addition and multiplication are commutative and associative, as are
the boolean operators. Thus, if the compiler sees a code fragment that
computes a +b and then computes b+ a, with no intervening assignments
toeither a or b, it should recognize that they compute the same value. Simi-
larly, if it sees the expressions a +b +c and d +a +b, it should recognize that
a+b is a common subexpression. If it evaluates both expressions in strict
left-to-right order, it will never recognize the common subexpression, since
it will compute the second expression as d+a and then (d+a) +b.

The compiler should use commutativity and associativity to improve the
quality of code that it generates. Reordering expressions can expose addi-
tional opportunities for many transformations.

Due to limitations in precision, floating-point numbers on a computer repre-
sentonly a subset of the real numbers, one that does not preserve associativity.
For this reason, compilers should not reorder floating-point expressions unless
the language definition specifically allows it.

Consider the following example: computing a-b-c. We can assign
floating-point values to a, b, and ¢ such that

b,c<a a-b=a a-c=a
buta - (b+c) # a.Inthat case, the numerical result depends on the order
of evaluation. Evaluating (a - b) - ¢ produces a result identical to a, while

evaluating b + ¢ first and subtracting that quantity from a produces a result
that is distinct from a.

This problem arises from the approximate nature of floating-point num-
bers; the mantissa is small relative to the range of the exponent. To add
two numbers, the hardware must normalize them; if the difference in expo-
nents is larger than the precision of the mantissa, the smaller number will
be truncated to zero. The compiler cannot easily work its way around this
issue, so it should, in general, avoid reordering float-point computations.

In either case, the code fits nicely into the treewalk framework. Note that the  If the actual parameter s a local variable of the
compiler cannot keep the value of a call-by-reference parameter in a register  Callerand its address is never taken, the
across an assignment, unless the compiler can prove that the reference is  COfesponding formalis unambiguous.

unambiguous, across all calls to the procedure.

7.3.3 Function Calls in an Expression

So far, we have assumed that all the operands in an expression are variables,
constants, and temporary values produced by other subexpressions. Function
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calls also occur as operands in expressions. To evaluate a function call, the
compiler simply generates the calling sequence needed to invoke the func-
tion and emits the code necessary to move the returned value to a register (see
Section 7.9). The linkage convention limits the callee’s impact on the caller.

The presence of a function call may restrict the compiler’s ability to change
an expression’s evaluation order. The function may have side effects that
modify the values of variables used in the expression. The compiler must
respect the implied evaluation order of the source expression, at least with
respect to the call. Without knowledge about the possible side effects of
a call, the compiler cannot move references across the call. The compiler
must assume the worst case—that the function both modifies and uses every
variable that it can access. The desire to improve on worst-case assumptions,
such as this one, has motivated much of the work in interprocedural analysis
(see Section 9.4).

7.3.4 Other Arithmetic Operators

To handle other arithmetic operations, we can extend the treewalk model.
The basic scheme remains the same: get the operands into registers, perform
the operation, and store the result. Operator precedence, from the expression
grammar, ensures the correct evaluation order. Some operators require com-
plex multioperation sequences for their implementation (e.g. exponentiation
and trigonometric functions). These may be expanded inline or implemented
with a call to a library routine supplied by the compiler or the operating
system.

7.3.5 Mixed-Type Expressions

One complication allowed by many programming languages is an operation
with operands of different types. (Here, we are concerned primarily with
base types in the source language, rather than programmer-defined types.)
As described in Section 4.2, the compiler must recognize this situation and
insert the conversion code required by each operator’s conversion table. Typ-
ically, this involves converting one or both operands to a more general type
and performing the operation in that more general type. The operation that
consumes the result value may need to convert it to yet another type.

Some processors provide explicit conversion operators; others expect the
compiler to generate complex, machine-dependent code. In either case, the
compiler writer may want to provide conversion operators in the IR. Such an
operator encapsulates all the details of the conversion, including any control
flow, and lets the compiler subject it to uniform optimization. Thus, code
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motion can pull an invariant conversion out of a loop without concern for
the loop’s internal control flow.

Typically, the programming-language definition specifies a formula for each
conversion. For example, to convert integer to complex in FORTRAN 77,
the compiler first converts the integer to a real. It uses the resulting num-
ber as the real part of the complex number and sets the imaginary part to a
real zero.

For user-defined types, the compiler will not have conversion tables that
define each specific case. However, the source language still defines
the meaning of the expression. The compiler’s task is to implement that
meaning; if a conversion is illegal, then it should be prevented. As seen
in Chapter 4, many illegal conversions can be detected and prevented at
compile time. When a compile-time check is either impossible or incon-
clusive, the compiler should generate a runtime check that tests for illegal
cases. When the code attempts an illegal conversion, the check should raise
a runtime error.

7.3.6 Assignment as an Operator

Most Algol-like languages implement assignment with the following simple
rules:

1. Evaluate the right-hand side of the assignment to a value.
2. Evaluate the left-hand side of the assignment to a location.
3. Store the right-hand side value into the left-hand side location.

Thus, in a statement such as a < b, the two expressions a and b are evalu-

ated differently. Since b appears to the right of the assignment operator, it

is evaluated to produce a value; if b is an integer variable, that value is an

integer. Since a is to the left of the assignment operator, it is evaluated to

produce a location; if a is an integer variable, that value is the location of

an integer. That location might be an address in memory, or it might be a

register. To distinguish between these modes of evaluation, we sometimes  Rvalue

refer to the result of evaluation on the right-hand side of an assignment as an ~ An expression evaluated to a value s an rvale.

rvalue and the result of evaluation on the left-hand side of an assignment as  Lvalue
an lvalue. An expression evaluated to a location is an value.

In an assignment, the type of the lvalue can differ from the type of the
rvalue. Depending on the language and the specific types, this situation may
require either a compiler-inserted conversion or an error message. The typi-
cal source-language rule for conversion has the compiler evaluate the rvalue
to its natural type and then convert the result to the type of the Ivalue.
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SECTION REVIEW

A postorder treewalk provides a natural way to structure a code genera-
tor for expression trees. The basic framework is easily adapted to handle
a variety of complications, including multiple kinds and locations of
values, function calls, type conversions, and new operators. To improve
the code further may require multiple passes over the code.

Some optimizations are hard to fit into a treewalk framework. In
particular, making good use of processor address modes (see Chapter
11), ordering operations to hide processor-specific delays (see

Chapter 12), and register allocation (see Chapter 13) do not fit well

into the treewalk framework. If the compiler uses a treewalk to generate
IR, it may be best to keep the IR simple and allow the back end to address
these issues with specialized algorithms.

|
Review Questions
1. Sketch the code for the two support routines, base and offset, used
by the treewalk code generator in Figure 7.5.
2. How might you adapt the treewalk code generator to handle an
unconditional jump operation, such as C's goto statement?

7.4 BOOLEAN AND RELATIONAL OPERATORS

Most programming languages operate on a richer set of values than num-
bers. Usually, this includes the results of boolean and relational operators,
both of which produce boolean values. Because most programming lan-
guages have relational operators that produce boolean results, we treat the
boolean and relational operators together. A common use for boolean and rela-
tional expressions is to alter the program’s control flow. Much of the power
of modern programming languages derives from the ability to compute and
test such values.

Figure 7.7 shows the standard expression grammar augmented with boolean

The grammar uses the symbols = for not, A and relational operators. The compiler writer must, in turn, decide how to
for and, and Vv for or to avoid confusion with

represent these values and how to compute them. For arithmetic expres-
ILOC operators.

sions, such design decisions are largely dictated by the target architecture,
The type checker must ensure that each which provides number formats and instructions to perform basic arithmetic.
expression applies operators to names, numbers,  Fortunately, processor architects appear to have reached a widespread agree-
and expressions of appropriate types. ment about how to support arithmetic. Similarly, most architectures provide
a rich set of boolean operations. However, support for relational operators
varies widely from one architecture to another. The compiler writer must use
an evaluation strategy that matches the needs of the language to the available
instruction set.
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Expr — Expr v AndTerm NumExpr — NumExpr + Term

|  AndTerm |  NumExpr — Term
AndTerm — AndTerm A RelExpr | Term

|  RelExpr Term — Term x Value
RelExpr — RelExpr < NumExpr | Term+ Value

|  RelExpr < NumExpr | Factor

|  RelExpr = NumExpr Value — = Factor

|  RelExpr # NumExpr |  Factor

|  RelExpr = NumExpr Factor —  (Expr)

| RelExpr > NumExpr | num

| NumExpr | name

M FIGURE 7.7 Adding Booleans and Relationals to the Expression Grammar.

7.4.1 Representations

Traditionally, two representations have been proposed for boolean values:
a numerical encoding and a positional encoding. The former assigns specific
values to true and false and manipulates them using the target machine’s
arithmetic and logical operations. The latter approach encodes the value of
the expression as a position in the executable code. It uses comparisons and
conditional branches to evaluate the expression; the different control-flow
paths represent the result of evaluation. Each approach works well for some
examples, but not for others.

Numerical Encoding

When the program stores the result of a boolean or relational operation into
a variable, the compiler must ensure that the value has a concrete representa-
tion. The compiler writer must assign numerical values to true and false that
work with the hardware operations such as and, or, and not. Typical values
are zero for false and either one or a word of ones, —false, for true.

For example, if b, c, and d are all in registers, the compiler might produce
the following code for the expression b vV ¢ A —d:

not rq = r
and re,r; = rp
or rp,rp = rjy

For a comparison, such as a < b, the compiler must generate code that
compares a and b and assigns the appropriate value to the result. If the
target machine supports a comparison operation that returns a boolean, the
code is trivial:

cmp-LT ra,rp = rp
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ILOC contains syntax to implement both styles of If, on the other hand, the comparison defines a condition code that must
compare and branch. A normal IR would choose be read with a branch, the resulting code is longer and more involved. This
one; ILOC includes both so that it can express the

style of comparison leads to a messier implementation for a <b.
code in this section.

comp ra,rp = cci

cbr_LT ccq —- L1, Ly
L1: Toadl true = ri

jumpl - L3
Lo: loadl false = rj

Jjumpl — L3
L3: nop

Implementing a < b with condition-code operations requires more operations
than using a comparison that returns a boolean.

Positional Encoding

In the previous example, the code at L creates the value true and the code
at L, creates the value false. At each of those points, the value is known. In
some cases, the code need not produce a concrete value for the expression’s
result. Instead, the compiler can encode that value in a location in the code,
suchas Lj or Lo.

Figure 7.8a shows the code that a treewalk code generator might emit for
the expression a <b Vv c<d A e < f. The code evaluates the three subexpres-
sions, a < b, ¢<d, and e<f, using a series of comparisons and jumps. It
then combines the result of the three subexpression evaluations using the
boolean operations at Lg. Unfortunately, this produces a sequence of opera-
tions in which every path takes 11 operations, including three branches and
three jumps. Some of the complexity of this code can be eliminated by rep-
resenting the subexpression values implicitly and generating code that short
circuits the evaluation, as in Figure 7.8b. This version of the code evaluates
a<b Vv c<d A e<f with fewer operations because it does not create values
to represent the subexpressions.

Positional encoding makes sense if an expression’s result is never stored.
When the code uses the result of an expression to determine control flow,
positional encoding often avoids extraneous operations. For example, in the
code fragment

if (a<b)
then statement|
else statementy

the sole use for a <b is to determine whether statement| or statement,
executes. Producing an explicit value for a < b serves no direct purpose.
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comp ra,rp = ccj // a<b comp ra,rp = cC1 // a<b
cbr_ LT ccy - L1, Ly cbr LT ccq — L3, 11
L1: Toadl true = r L1: comp  r¢,rq = ccp // ¢ <d
jumpl — — L3 cbr LT ccp — Lo, Ly
Lyo: loadl false = r
jumpl  — L3 Lo: comp re,rf = cc3 /1l e<f
cbr_ LT cc3 — L3, L
L3: comp re,rq = ccp // ¢c<d
chr LT ccp = 14, s L3: 1.oadI true = rg
Lg: loadl true = ry Jumpl - Ls
Jumpl  — Lg Lg: lToadl false = rg
Lg: loadl false = rj JjumplI — Lg
jumpl  — Lg Ls: nop
Lg: comp re,rf = cc3 //le<f
cbr LT cc3 — L7, Lg
L7: Toadl true = r3
Jjumpl — Lg
Lg: loadl false = rj
JjumplI — Lg
Lg: and ro,r3 = rg
or ry,r4 = rg
(b) Positional Encoding with
(a) Naive Encoding Short-Circuit Evaluation

M FIGURE7.8 Encodinga<bwvc<dAe<f.

On a machine where the compiler must use a comparison and a branch to
produce a value, the compiler can simply place the code for statement, and
statement, in the locations where naive code would assign true and false.
This use of positional encoding leads to simpler, faster code than using
numerical encoding.

comp ra,rp, = ccj // a <b
cbr LT ccq — L1, Ly

L1: code for statement,

Jjumpl — Lg
Lo: code for statement,

Jumpl — Lg
Le: nop

Here, the code to evaluate a <b has been combined with the code to select
between statement| and statement;. The code represents the result of a <b
as a position, either L7 or L.

7.4.2 Hardware Support for Relational Operations

Specific, low-level details in the target machine’s instruction set strongly
influence the choice of a representation for relational values. In particular,
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SHORT-CIRCUIT EVALUATION

In many cases, the value of a subexpression determines the value of the
entire expression. For example, the code shown in Figure 7.8a, evaluates
c<dAae<f, even if it has already determined that a <b, in which case the
entire expression evaluates to true. Similarly, if both a > b and ¢ > d,
then the value of e<f does not matter. The code in Figure 7.8b uses
these relationships to produce a result as soon as the expression’s value
can be known. This approach to expression evaluation, in which the code
evaluates the minimal amount of the expression needed to determine its
final value, is called short-circuit evaluation. Short-circuit evaluation relies
on two boolean identities:

Vx, false A x = false
Vx, true VvV x = true

To generate the short-circuit code, the compiler must analyze the expres-
sion in light of these two identities and find the set of minimal conditions
that determine its value. If clauses in the expression contain expensive
operators or if the evaluation uses branches, as do many of the schemes
discussed in this section, then short-circuit evaluation can significantly
reduce the cost of evaluating boolean expressions.

Some programming languages, like C, require the compiler to use short-
circuit evaluation. For example, the expression

(x =0 && y/x > 0.001)

in C relies on short-circuit evaluation for safety. If x is zero, y / x is not
defined. Clearly, the programmer intends to avoid the hardware exception
triggered by division by zero. The language definition specifies that this
code will never perform the division if x has the value zero.

the compiler writer must pay attention to the handling of condition codes,
compare operations, and conditional move operations, as they have a major
impact on the relative costs of the various representations. We will consider
four schemes for supporting relational expressions: straight condition codes,
condition codes augmented with a conditional move operation, boolean-
valued comparisons, and predicated operations. Each scheme is an idealized
version of a real implementation.

Figure 7.9 shows two source-level constructs and their implementations
under each of these schemes. Figure 7.9a shows an if-then-else that con-
trols a pair of assignment statements. Figure 7.9b shows the assignment of a
boolean value.
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if (x <y)
SELE then a < c +d
Code
else a < e + f
comp  ry,ry = ccj cmpLT rx,ry = rp
cbr_LT ccy — L1, L cbr ri —- L1, Ly
L1: add re.rd = ra L;: add re.rd = ra
Jjumpl — Lout Jjumpl — Lout
Lo: add re,rf = ra Lp: add re,rf = ra
Jumpl — Lout Jumpl — Lout
IL
Cood?a Lout: nop Lout: nop
Straight Condition Codes Boolean Compare
comp  ry,ry = cC cmpLT ryx,ry = rp
add re, rq = rp not r = ry
add re, rf = ry (rq)? add re.,rq = ra
121_LT ccy,r1,rp = ra (rp)? add re,rf = ra
Conditional Move Predicated Execution
(a) Using a Relational Expression to Govern Control Flow
Source
Code x < a<banc<d
comp  ra,rp = CC
i2i_LT cc1,r7,rg = rp
comp re,rq = CCp
comp ra, rp = cCj 121_LT ccp,r7,.rg = ry
cbr_LT ccq — L1,Lo and ri,ro = Iy
Ly: comp rc, rq = ccp Conditional Move
cbr_LT ccp — L3,L»
ILoC Lp: loadl false = rx cmp-LT ra, rp =
Code Jjumpl — Lout cmp_LT rec, rg = ry
L3: loadl true = ry and re. re = I'x
Jumpl — Lout Boolean Compare
Loyt: nop E N
. " cmp_LT ra, rp ri
Straight Condition Codes cmp_LT Fi, rg =
and ri, ro = rx
Predicated Execution

(b) Using a Relational Expression to Produce a Value

M FIGURE 7.9 Implementing Boolean and Relational Operators.

Straight Condition Codes

In this scheme, the comparison operation sets a condition-code register. The
only instruction that interprets the condition code is a conditional branch,
with variants that branch on each of the six relations (<, <, =, >, >, and #).
These instructions may exist for operands of several types.
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SHORT-CIRCUIT EVALUATION AS AN OPTIMIZATION

Short-circuit evaluation arose from a positional encoding of the values
of boolean and relational expressions. On processors that use condition
codes to record the result of a comparison and use conditional branches
to interpret the condition code, short circuiting makes sense.

As processors include features like conditional move, boolean-valued
comparisons, and predicated execution, the advantages of short-circuit
evaluation will likely fade. With branch latencies growing, the cost of the
conditional branches required for short circuiting grows too. When the
branch costs exceed the savings from avoiding evaluation, short circuiting
will no longer be an improvement. Instead, full evaluation will be faster.

When the language requires short-circuit evaluation, as does C, the com-
piler may need to perform some analysis to determine when it is safe to
substitute full evaluation for short-circuit evaluation. Thus, future C com-
pilers may include analysis and transformation to replace short circuiting
with full evaluation, just as compilers in the past have performed analysis
and transformation to replace full evaluation with short-circuit evaluation.

The compiler must use conditional branches to interpret the value of a con-
dition code. If the sole use of the result is to determine control flow, as in
Figure 7.9a, then the conditional branch that the compiler uses to read the con-
dition code can often implement the source-level control-flow construct, as
well. If the result is used in a boolean operation, or it is preserved in a variable,
as in Figure 7.9b, the code must convert the result into a concrete representa-
tion of a boolean, as do the two ToadI operations in Figure 7.9b. Either way,
the code has at least one conditional branch per relational operator.

The advantage of condition codes comes from another feature that pro-
cessors usually implement alongside condition codes. Typically, arithmetic
operations on these processors set the condition code to reflect their com-
puted results. If the compiler can arrange to have the arithmetic operations
that must be performed also set the condition code needed to control the
branch, then the comparison operation can be omitted. Thus, advocates of
this architectural style argue that it allows a more efficient encoding of the
program—the code may execute fewer instructions than it would with a
comparator that puts a boolean value in a general-purpose register.

Conditional Move

This scheme adds a conditional move instruction to the straight condition-
code model. In 1LoC, a conditional move looks like:

i2i_LT cci,ry,rg = rn



7.4 Boolean and Relational Operators 357

If the condition code cc; matches LT, then the value of rj is copied to ry.
Otherwise, the value of ry is copied to rp. The conditional move operation
typically executes in a single cycle. It leads to faster code by allowing the
compiler to avoid branches.

Conditional move retains the principal advantage of using condition codes—
avoiding a comparison when an earlier operation has already set the con-
dition code. As shown in Figure 7.9a, it lets the compiler encode simple
conditional operations with branches. Here, the compiler speculatively eval-
uates the two additions. It uses conditional move for the final assignment.
This is safe as long as neither addition can raise an exception.

If the compiler has values for true and false in registers, say r1 for true
and rr for false, then it can use conditional move to convert the condition
code into a boolean. Figure 7.9b uses this strategy. It compares a and b and
places the boolean result in rj. It computes the boolean for ¢ <d into rj. It
computes the final result as the logical and of r1 and r».

Boolean-Valued Comparisons

This scheme avoids condition codes entirely. The comparison operator
returns a boolean value in a register. The conditional branch takes that result
as an argument that determines its behavior.

Boolean-valued comparisons do not help with the code in Figure 7.9a.
The code is equivalent to the straight condition-code scheme. It requires
comparisons, branches, and jumps to evaluate the i f-then-else construct.

Figure 7.9b shows the strength of this scheme. The boolean compare lets
the code evaluate the relational operator without a branch and without con-
verting comparison results to boolean values. The uniform representation
of boolean and relational values leads to concise, efficient code for this
example.

A weakness of this model is that it requires explicit comparisons. Whereas
the condition-code models can sometimes avoid the comparison by arrang-
ing to set the appropriate condition code with an earlier arithmetic oper-
ation, the boolean-valued comparison model always needs an explicit
comparison.

Predicated Execution . .
. . . . . Predicated execution
Architectures that support predicated execution let the compiler avoid some 3 chitectural feature in which some operations

conditional branches. In 1Loc, we write a predicated instruction by includ-  take a boolean-valued operand that determines
ing a predicate expression before the instruction. To remind the reader of  whether or not the operation takes effect
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the predicate’s purpose, we enclose it in parentheses and follow it with a
question mark. For example,

(r17)? add ra,rp = rc

indicates an add operation (r, +rp,) that executes if and only if r17 contains
true.

The example in Figure 7.9a shows the strength of predicated execution.
The code is simple and concise. It generates two predicates, ri and
ro. It uses them to control the code in the then and else parts of the
source construct. In Figure 7.9b, predication leads to the same code as the
boolean-comparison scheme.

The processor can use predication to avoid executing the operation, or it can
execute the operation and use the predicate to avoid assigning the result.
As long as the idled operation does not raise an exception, the differences
between these two approaches are irrelevant to our discussion. Our examples
show the operations required to produce both the predicate and its comple-
ment. To avoid the extra computation, a processor could provide compar-
isons that return two values, both the boolean value and its complement.

SECTION REVIEW

The implementation of boolean and relational operators involves more
choices than the implementation of arithmetic operators. The compiler
writer must choose between a numerical encoding and a positional
encoding. The compiler must map those decisions onto the set of
operations provided by the target processor’s ISA.

In practice, compilers choose between numerical and positional
encoding based on context. If the code instantiates the value,
numerical encoding is necessary. If the value’s only use is to determine
control flow, positional encoding often produces better results.

[

Review Questions

1. If the compiler assigns the value zero to false, what are the relative
merits of each of the following values for true? One? Any non-zero
number? A word composed entirely of ones?

2. How might the treewalk code generation scheme be adapted to gen-
erate positional code for boolean and relational expressions? Can you
work short-circuit evaluation into your approach?
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7.5 STORING AND ACCESSING ARRAYS

So far, we have assumed that variables stored in memory contain scalar val-
ues. Many programs need arrays or similar structures. The code required
to locate and reference an element of an array is surprisingly complex. This
section shows several schemes for laying out arrays in memory and describes
the code that each scheme produces for an array reference.

7.5.1 Referencing a Vector Element

The simplest form of an array has a single dimension; we call it a vector.
Vectors are typically stored in contiguous memory, so that the ¥ element
immediately precedes the i+1* element. Thus, a vector V[3...10] gener-
ates the following memory layout, where the number below a cell indicates
its index in the vector:

When the compiler encounters a reference, like V[ 6], it must use the index
into the vector, along with facts available from the declaration of V, to gen-
erate an offset for V[6]. The actual address is then computed as the sum of
the offset and a pointer to the start of V, which we write as @V.

As an example, assume that V has been declared as V[low...highl, where
low and high are the vector’s lower and upper bounds. To translate the ref-
erence V[ 1], the compiler needs both a pointer to the start of storage for V
and the offset of element i within V. The offset is simply (i — low) x w,
where w is the length of a single element of V. Thus, if low is 3, i is 6, and
w is 4, the offset is (6 — 3) x 4 = 12. Assuming that r; holds the value of 1,
the following code fragment computes the address of V[ 1] into r3 and loads
its value into ry:

loadl @V = re@y // get V’s address

subl ry,3 = // (offset - Tower bound)
multl r1,4 = ro // x element Tength (4)
add rey,ry = rj // address of V[il

load r3 = ry // value of V[il]

Notice that the simple reference V[ i ] introduces three arithmetic operations.
The compiler can improve this sequence. If w is a power of two, the multiply
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can be replaced with an arithmetic shift; many base types in real program-
ming languages have this property. Adding the address and offset seems
unavoidable; perhaps this explains why most processors include an address-
ing mode that takes a base address and an offset and accesses the location at
base address + offset. In 1Loc, we write this as 10adAOQ.

loadl @V = r@y // get V’s address

subl ri,3 = ri // (offset - Tower bound)
1shiftl r1,2 = rp // x element length (4)
loadAO0 ray,rp = ry // value of V[i]

False zero Using a lower bound of zero eliminates the subtraction. If the compiler
The false zero of a vector V is the address where knows the lower bound of V, it can fold the subtraction into @V. Rather than
VLO ] would be. using @V as the base address for V, it can use Vo = @V — low x w. We call

In multiple dimensions, it is the location of azero @V the false zero of V.
in each dimension.

Using @V and assuming that i isin r, the code for accessing V[ i ] becomes

loadl @V = raey, // adjusted address for V
Tshiftl ry, 2 = ri // x element length (4)
T0adAO  ray,, r1 = ry // value of V[i]

This code is shorter and, presumably, faster. A good assembly-language pro-
grammer might write this code. In a compiler, the longer sequence may
produce better results by exposing details such as the multiply and add to
optimization. Low-level improvements, such as converting the multiply into
a shift and converting the add—10ad sequence into with 10adA0, can be done
late in compilation.

If the compiler does not know an array’s bounds, it might calculate the
array’s false zero at runtime and reuse that value in each reference to the
array. It might compute the false zero on entry to a procedure that references
elements of the array multiple times. An alternative strategy, employed in
languages like c, forces the use of zero as a lower bound, which ensures that
@V = @V and simplifies all array-address calculations. However, attention
to detail in the compiler can achieve the same results without restricting the
programmer’s choice of a lower bound.
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7.5.2 Array Storage Layout

Accessing an element of a multidimensional array requires more work.
Before discussing the code sequences that the compiler must generate, we
must consider how the compiler will map array indices to memory locations.
Most implementations use one of three schemes: row-major order, column-
major order, or indirection vectors. The source-language definition usually
specifies one of these mappings.

The code required to access an array element depends on the way that the
array is mapped to memory. Consider the array A[1...2,1...4]. Conceptu-
ally, it looks like

1,111,2(1,3(1,4

2112,212,3(2,4

In linear algebra, the row of a two-dimensional matrix is its first dimen-
sion, and the column is its second dimension. In row-major order, the
elements of a are mapped onto consecutive memory locations so that adja-
cent elements of a single row occupy consecutive memory locations. This
produces the following layout:

‘1,1|1,2|1,3|1,4|2,1|2,2|2,3|2,4‘

The following loop nest shows the effect of row-major order on memory
access patterns:

for i < 1 to 2
for j < 1 to 4
Al1,§] < A[1,j]1 + 1

In row-major order, the assignment statement steps through memory in
sequential order, beginning with A[1,1], A[1,2], A[1,3], and on through
AL2,41]. This sequential access works well with most memory hierarchies.
Moving the i loop inside the j loop produces an access sequence that jumps
between rows, accessing A[1,1], A[2,1], A[1,2]1,..., Al2,4]. For a
small array like a, this is not a problem. For arrays that are larger than the
cache, the lack of sequential access could produce poor performance in the
memory hierarchy. As a general rule, row-major order produces sequential
access when the rightmost subscript, j in this example, varies fastest.
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FORTRAN uses column-major order. The obvious alternative to row-major order is column-major order. It
keeps the columns of a in contiguous locations, producing the following
layout:

1,112,111,212,2(1,3|12,3|1,4(2,4

Column-major order produces sequential access when the leftmost subscript
varies fastest. In our doubly nested loop, having the i loop in the outer posi-
tion produces nonsequential access, while moving the i loop to the inner
position would produce sequential access.

A third alternative, not quite as obvious, has been used in several languages.
This scheme uses indirection vectors to reduce all multidimensional arrays
to a set of vectors. For our array a, this would produce

e REED
eifeafeales

Each row has its own contiguous storage. Within a row, elements are

addressed as in a vector. To allow systematic addressing of the row vectors,
the compiler allocates a vector of pointers and initializes it appropriately. A
similar scheme can create column-major indirection vectors.

Indirection vectors appear simple, but they introduce their own complexity.
First, indirection vectors require more storage than either of the contiguous
storage schemes, as shown graphically in Figure 7.10. Second, this scheme
requires that the application initialize, at runtime, all of the indirection point-
ers. An advantage of the indirection vector approach is that it allows easy
implementation of ragged arrays, that is, arrays where the length of the last
dimension varies.

Each of these schemes has been used in a popular programming language.
For languages that store arrays in contiguous storage, row-major order has
been the typical choice; the one notable exception is FORTRAN, which uses
column-major order. Both BcpL and Java support indirection vectors.

7.5.3 Referencing an Array Element

Programs that use arrays typically contain references to individual array ele-
ments. As with vectors, the compiler must translate an array reference into
a base address for the array’s storage and an offset where the element is
located relative to the starting address.
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1111112113114

1,21(122)11,23(1,24

B ™~=11,3,1(1,321,3,3[1,3,4

| —~121,1]1212]213(2,1,4

2211222(223(224

™=123,1(2,3,223,3|23,4

M FIGURE 7.10 Indirection Vectors in Row-Major OrderforB[1...2,1...3,1...4].

This section describes the address calculations for arrays stored as a con-
tiguous block in row-major order and as a set of indirection vectors. The
calculations for column-major order follow the same basic scheme as those
for row-major order, with the dimensions reversed. We leave those equations
for the reader to derive.

Row-Major Order

In row-major order, the address calculation must find the start of the row and
then generate an offset within the row as if it were a vector. Extending the
notation that we used to describe the bounds of a vector, we add subscripts to
low and high that specify a dimension. Thus, low; refers to the lower bound
of the first dimension, and high, refers to the upper bound of the second
dimension. In our example A[1...2,1...41], low; is 1 and high; is 4.

To access element AL, j], the compiler must emit code that computes
the address of row i and follow that with the offset for element j, which
we know from Section 7.5.1 will be (j — lowp) x w. Each row contains
four elements, computed as high, — low, + 1, where high; is the highest-
numbered column and low; is the lowest-numbered column—the upper and
lower bounds for the second dimension of A. To simplify the exposition, let
leny = highy — lowy + 1, the length of the k™ dimension. Since rows are
laid out consecutively, row i begins at (i — low1) X leny x w from the start
of A. This suggests the address computation

@A+ (i — lowy) x leny x w + (j — lowp) x w
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Substituting actual values for i, j, lowy, highy, low;, and w, we find that
A[2,37 lies at offset

C-Dx@-14+Dx4+3B-1Dx4=2

from A[1,1] (assuming that @A points at A[1, 1], at offset 0). Looking at A
in memory, we find that the address of A[1,1] + 24 is, in fact, the address
of A[2,3].

0 4 8 12 16 20 24 28
1,111,2(1,3(1,4]121]122]|23(24

@A AL2,3]
In the vector case, we were able to simplify the calculation when upper and
lower bounds were known at compile time. Applying the same algebra to

create a false zero in the two-dimensional case produces

@A + (i x leny x w) — (low1 X leny x w) + (j x w) — (lowp x w), or

@A+ (i x leny x w) + (J x w) — (low| X leny x w + lowy X w)

The last term, (low; X leny x w 4+ lowy X w), is independent of i and j, so
it can be factored directly into the base address

@Ag = @A — (lowy X leny x w + lowy x w) = @A — 20
Now, the array reference is simply
@Ag 41 xleny xw+jxw

Finally, we can refactor and move the w outside, saving an extraneous
multiply

@Ay + (i X lenp +3) xw
For the address of A[2, 3], this evaluates to
@+ (2 x 4+3) x 4=0Aq + 44
Since @A is just @A — 20, this is equivalent to @A — 20 + 44 = @A + 24,

the same location found with the original version of the array address
polynomial.
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If we assume that i and j are in ry and rj, and that len; is a constant, this
form of the polynomial leads to the following code sequence:

loadl @Ag = rea, // adjusted base for A
multl ryi,leny = r /] i X leny

add re,ry = rp /] + ]

multl ro,4 = r3 // x element Tength, 4
10adAQ rap,.r3 = ra // value of A[i,j]

In this form, we have reduced the computation to two multiplications and
two additions (one in the 10adA0). The second multiply can be rewritten as
a shift.

If the compiler does not have access to the array bounds, it must either com-
pute the false zero at runtime or use the more complex polynomial that
includes the subtractions that adjust for lower bounds. The former option
can be profitable if the elements of the array are accessed multiple times in
a procedure; computing the false zero on entry to the procedure lets the code
use the less expensive address computation. The more complex computation
makes sense only if the array is accessed infrequently.

The ideas behind the address computation for arrays with two dimensions
generalize to arrays of higher dimension. The address polynomial for an
array stored in column-major order can be derived in a similar fashion.
The optimizations that we applied to reduce the cost of address computa-
tions apply equally well to the address polynomials for these other kinds of
arrays.

Indirection Vectors

Using indirection vectors simplifies the code generated to access an indi-
vidual element. Since the outermost dimension is stored as a set of vectors,
the final step looks like the vector access described in Section 7.5.1. For
BLi,Jj,kl, the final step computes an offset from k, the outermost dimen-
sion’s lower bound, and the length of an element for B. The preliminary
steps derive the starting address for this vector by following the appropriate
pointers through the indirection-vector structure.

Thus, to access element B[ 1, j, k] in the array B shown in Figure 7.10, the
compiler uses @B, i, and the length of a pointer, to find the vector for the
subarray B[i,*,*]. Next, it uses that result, along with j and the length of
a pointer to find the vector for the subarray B[ 1, j, =]. Finally, it uses that
base address in the vector-address computation with k and element length w
to find the address of B[ 1, j,k].
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If the current values for i, j, and k exist in registers ri,rj, and ry, respec-
tively, and @Bq is the zero-adjusted address of the first dimension, then
B[1,J,k] can be referenced as follows:

loadl @By
multl ri,4
10adAO rag,, ri

reg, // false zero of B
ri // assume pointer is 4 bytes
ro // get @B[i,%*,*]

rj // pointer is 4 bytes
ryg // get @B[i,j,*]

multl rj,4
loadAO rp, r3

multl ry,4
10adAO ryq, rs

rg // assume element length is 4
rp // value of B[i,j,k]

L 2

This code assumes that the pointers in the indirection structure have already
been adjusted to account for nonzero lower bounds. If that is not the case,
then the values in rj and ry must be decremented by the corresponding
lower bounds. The multiplies can be replaced by shifts in this example.

Using indirection vectors, the reference requires just two operations per
dimension. This property made the indirection-vector scheme efficient on
systems in which memory access is fast relative to arithmetic—for example,
on most computer systems prior to 1985. As the cost of memory accesses has
increased relative to arithmetic, this scheme has lost its advantage in speed.

On cache-based machines, locality is critical to performance. When arrays
grow to be much larger than the cache, storage order affects locality. Row-
major and column-major storage schemes produce good locality for some
array-based operations. The locality properties of an array implemented with
indirection vectors are harder for the compiler to predict and, perhaps, to
optimize.

Accessing Array-Valued Parameters

When an array is passed as a parameter, most implementations pass it by
reference. Even in languages that use call by value for all other parameters,
arrays are usually passed by reference. Consider the mechanism required to
pass an array by value. The caller would need to copy each array element’s
value into the activation record of the callee. Passing the array as a reference
parameter can greatly reduce the cost of each call.

If the compiler is to generate array references in the callee, it needs infor-
mation about the dimensions of the array that is bound to the parameter. In
FORTRAN, for example, the programmer is required to declare the array using
either constants or other formal parameters to specify its dimensions. Thus,
FORTRAN gives the programmer responsibility for passing to the callee the
information that it needs to address correctly a parameter array.



1.5 Storing and Accessing Arrays 367

Other languages leave the task of collecting, organizing, and passing the

necessary information to the compiler. The compiler builds a descriptor that ~ Dope vector

contains both a pointer to the start of the array and the necessary information  a desciptor for an actual parameter array

for each dimension. The descriptor has a known size, even when the array’s  Dope vectors may also be used for arrays whose
size cannot be known at compile time. Thus, the compiler can allocate space  bounds are determined at runtime.

for the descriptor in the AR of the callee procedure. The value passed in the

array’s parameter slot is a pointer to this descriptor, which is called a dope

vector.

When the compiler generates a reference to a formal-parameter array, it must
extract the information from the dope vector. It generates the same address
polynomial that it would use for a reference to a local array, loading values
out of the dope vector as needed. The compiler must decide, as a matter
of policy, which form of the address polynomial it will use. With the naive
address polynomial, the dope vector contains a pointer to the start of the
array, the lower bound of each dimension, and the sizes of all but one of the
dimensions. With the address polynomial based on the false zero, the lower-
bound information is unneeded. Because it may compile caller and callee
separately, the compiler must be consistent in its usage. In most cases, the
code to build the actual dope vector can be moved away from the call site
and placed in the caller’s prologue code. For a call inside a loop, this move
reduces the call overhead.

One procedure might be invoked from multiple call sites, each passing a
different array. The PL/1 procedure main in Figure 7.11a contains two calls
to procedure fee. The first passes the array x, while the second passes y.
Inside fee, the actual parameter (x or y) is bound to the formal parameter A.
The code in fee for a reference to A needs a dope vector to describe the actual
parameter. Figure 7.11b shows the respective dope vectors for the two call
sites, based on the false-zero version of the address polynomial.

Notice that the cost of accessing an array-valued parameter or a dynami-
cally sized array is higher than the cost of accessing a local array with
fixed bounds. At best, the dope vector introduces additional memory refer-
ences to access the relevant entries. At worst, it prevents the compiler from
performing optimizations that rely on complete knowledge of an array’s
declaration.

7.5.4 Range Checking

Most programming-language definitions assume, either explicitly or implic-
itly, that a program refers only to array elements within the defined bounds
of an array. A program that references an out-of-bounds element is, by
definition, not well formed. Some languages (for example, Java and Ada)
require that out-of-bounds accesses be detected and reported. In other
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program main;
begin;
declare x(1:100,1:10,2:50),
y(1:10,1:10,15:35) float;

call fee(x)
call fee(y);
end main;

procedure fee(A)
declare A(*,*,*) float;

begin;
declare x float;
declare i, j, k fixed binary;
= A At the Second Call
end fee;
(a) Code that Passes Whole Arrays (b) Dope Vectors for the Call Sites

M FIGURE 7.11 Dope Vectors.

languages, compilers have included optional mechanisms to detect and
report out-of-bounds array accesses.

The simplest implementation of range checking, as this is called, inserts
a test before each array reference. The test verifies that each index value
falls in the valid range for the dimension in which it is used. In an array-
intensive program, the overhead of such checks can be significant. Many
improvements on this simple scheme are possible. The least expensive alter-
native is to prove, in the compiler, that a given reference cannot generate an
out-of-bounds reference.

If the compiler intends to insert range checks for array-valued parameters, it
may need to include additional information in the dope vectors. For exam-
ple, if the compiler uses the address polynomial based on the array’s false
zero, it has length information for each dimension, but not upper and lower
bound information. It might perform an imprecise test by checking the offset
against the array’s overall length. However, to perform a precise test, the
compiler must include the upper and lower bounds for each dimension in
the dope vector and test against them.

When the compiler generates runtime code for range checking, it inserts
many copies of the code to report an out-of-range subscript. Optimizing
compilers often contain techniques that improve range-checking code.
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Checks can be combined. They can be moved out of loops. They can be
proved redundant. Taken together, such optimizations can radically reduce
the overhead of range checking.

SECTION REVIEW

Programming language implementations store arrays in a variety of
formats. The primary ones are contiguous arrays in either row-major
or column-major order and disjoint arrays using indirection vectors.
Each format has a distinct formula for computing the address of a
given element. The address polynomials for contiguous arrays can be
optimized with simple algebra to reduce their evaluation costs.

Parameters passed as arrays require cooperation between the caller and
the callee. The caller must create a dope vector to hold the information
that the callee requires. The caller and callee must agree on the dope
vector format.

s

Review Questions

1. For a two-dimensional array A stored in column-major order, write
down the address polynomial for the reference A[i, j]. Assume that
A is declared with dimensions (/; : h;) and (/5 : h,) and that elements of
A occupy w bytes.

2. Given an array of integers with dimensions A[0:99,0:89,0:109],
how many words of memory are used to represent A as a compact
row-major order array? How many words are needed to represent
A using indirection vectors? Assume that both pointers and integers
require one word each.

|

7.6 CHARACTER STRINGS

The operations that programming languages provide for character data are
different from those provided for numerical data. The level of programming-
language support for character strings ranges from c’s level of support,
where most manipulation takes the form of calls to library routines, to
pL/U’s level of support, where the language provides first-class mecha-
nisms to assign individual characters, specify arbitrary substrings, and
concatenate strings to form new strings. To illustrate the issues that arise
in string implementation, this section discusses string assignment, string
concatenation, and the string-length computation.

String operations can be costly. Older cisc architectures, such as the 1BM
S/370 and the DEC vAX, provide extensive support for string manipulation.
Modern Rrisc machines rely more heavily on the compiler to code these
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complex operations using a set of simpler operations. The basic operation,
copying bytes from one location to another, arises in many different contexts.

7.6.1 String Representations

The compiler writer must choose a representation for strings; the details of
that representation have a strong impact on the cost of string operations. To
see this point, consider two common representations of a string b. The one
on the left is traditional in ¢ implementations. It uses a simple vector of
characters, with a designated character (‘\0’) serving as a terminator. The
glyph J represents a blank. The representation on the right stores the length
of the string (8) alongside its contents. Many language implementations have
used this approach.

el fifefofof | fefepfsfrfrfifn]e]

@b @b
Null Termination Explicit Length Field

If the length field takes more space than the null terminator, then storing
the length will marginally increase the size of the string in memory. (Our
examples assume the length is 4 bytes; in practice, it might be smaller.) How-
ever, storing the length simplifies several operations on strings. If a language
allows varying-length strings to be stored inside a string allocated with some
fixed length, the implementor might also store the allocated length with
the string. The compiler can use the allocated length for runtime bounds
checking on assignment and concatenation.

7.6.2 String Assignment

String assignment is conceptually simple. In ¢, an assignment from the third
character of b to the second character of a can be written as a[1]=b[2];.
loadI @b = raep On a machine with character-sized memory operations (cload and cstore),
cloadAl regp.2 = rp this translates into the simple code shown in the margin. (Recall that the first

loadI @a = Tea character in a is a[ 0] because c uses zero as the lower bound of all arrays.)
cstoreAl ry = r@a.l

If, however, the underlying hardware does not support character-oriented
memory operations, the compiler must generate more complex code.
Assuming that both a and b begin on word boundaries, that a character
occupies 1 byte, and that a word is 4 bytes, the compiler might emit the
following code:

loadl O0x0000FFO00 = r¢2 // mask for 2nd char
loadl OxFFOOFFFF = rc124 // mask for chars 1, 2, & 4
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loadl @b = ra@p // address of b

load reb = r1 // get 1st word of b
and ri, ree = rp // mask away others
Ishiftl rp,8 = rz // move it over 1 byte
loadl @a = re@a // address of a

load res = rgq // get 1st word of a
and rq,rciea = rg // mask away 2nd char
or r3, rg = reg // put in new 2nd char
store re = r@a // put it back in a

This code loads the word that contains b[ 2], extracts the character, shifts
it into position, masks it into the proper position in the word that contains
al[1], and stores the result back into place. In practice, the masks that the
code loads into rc» and rcip4 would likely be stored in statically initial-
ized storage or computed. The added complexity of this code sequence may
explain why character-oriented load and store operations are common.

The code is similar for longer strings. PL/I has a string assignment operator.
The programmer can write a statement such as a = b; where a and b have
been declared as character strings. Assume that the compiler uses the explicit
length representation. The following simple loop will move the characters on
a machine with byte-oriented c1oad and cstore operations:

loadl @b = rep
loadAl rap, -4 = r // get b’s Tength
loadl @a = r@a
loadAl rea, -4 = ro // get a’s length
cmp-LT ro,ry = rs /7 will b fit in a?
cbr ra — Lsov, L1 // raise overflow

L1: Toadl 0 = ra // counter

a=nb: cmp-LT rg,ri = rs // more to copy?

cbr rg — Lo, L3

Lo: cloadAO0 r@p,rs = rg // get char from b
cstoreAQ rg = r@a, "4 // put it in a
add! rq, 1 = Iy // increment offset
cmp-LT rg,rp = ry // more to copy?
cbr ry — Lo, L3

L3: storeAl r = r@a, -4 // set Tength

Notice that this code tests the lengths of a and b to avoid overrunning a.
(With an explicit length representation, the overhead is small.) The label
Lsov represents a runtime error handler for string-overflow conditions.

In ¢, which uses null termination for strings, the same assignment would be
written as a character-copying loop.
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loadl @b = raep // get pointers
loadl @a = rea
loadl NULL = rp // terminator
t1 = a; cload raep = ry // get next char
ty = b;
dz { L1: cstore r» = rea // store it
Aty b = xtpbts addI reb. 1l = rep // bump pointers
X g addI rea. 1 = rea
Juhile (xtp 1= "\0") cload rap = rp // get next char
cmpNE rp,rp = rg
cbr rg — L1, Ly
Lo: nop // next statement

If the target machine supports autoincrement on 1oad and store operations,
the two adds in the loop can be performed in the c1oad and cstore opera-
tions, which reduces the loop to four operations. (Recall that ¢ was originally
implemented on the DEC pDP/11, which supported auto-postincrement.)
Without autoincrement, the compiler would generate better code by using
cloadA0 and cstoreAQ with a common offset. That strategy would only use
one add operation inside the loop.

To achieve efficient execution for long word-aligned strings, the compiler
can generate code that uses whole-word loads and stores, followed by a
character-oriented loop to handle any leftover characters at the end of the
string.

If the processor lacks character-oriented memory operations, the code is
more complex. The compiler could replace the load and store in the loop
body with a generalization of the scheme for masking and shifting single
characters shown in the single character assignment. The result is a func-
tional, but ugly, loop that requires many more instructions to copy b into a.

The advantages of the character-oriented loops are simplicity and general-
ity. The character-oriented loop handles the unusual but complex cases, such
as overlapping substrings and strings with different alignments. The disad-
vantage of the character-oriented loop is its inefficiency relative to a loop
that moves larger blocks of memory on each iteration. In practice, the com-
piler might well call a carefully optimized library routine to implement the
nontrivial cases.

7.6.3 String Concatenation

Concatenation is simply a shorthand for a sequence of one or more assign-
ments. It comes in two basic forms: appending string b to string a, and
creating a new string that contains a followed immediately by b.
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The former case is a length computation followed by an assignment. The
compiler emits code to determine the length of a. Space permitting, it then
performs an assignment of b to the space that immediately follows the con-
tents of a. (If sufficient space is not available, the code raises an error at
runtime.) The latter case requires copying each character in a and each char-
acter in b. The compiler treats the concatenation as a pair of assignments and
generates code for the assignments.

In either case, the compiler should ensure that enough space is allocated
to hold the result. In practice, either the compiler or the runtime system
must know the allocated length of each string. If the compiler knows those
lengths, it can perform the check during code generation and avoid the run-
time check. In cases where the compiler cannot know the lengths of a and b,
it must generate code to compute the lengths at runtime and to perform the
appropriate test and branch.

7.6.4 String Length

Programs that manipulate strings often need to compute a character string’s
length. In ¢ programs, the function strlen in the standard library takes a
string as its argument and returns the string’s length, expressed as an integer.
In pL/1, the built-in function Tength performs the same function. The two
string representations described previously lead to radically different costs
for the length computation.

1. Null Terminated String The length computation must start at the
beginning of the string and examine each character, in order, until it
reaches the null character. The code is similar to the ¢ character-copying
loop. It requires time proportional to the length of the string.

2. Explicit Length Field The length computation is a memory reference.
In 1LOC, this becomes a 10adI of the string’s starting address into a
register, followed by a ToadAI to obtain the length. The cost is constant
and small.

The tradeoff between these representations is simple. Null termination saves
a small amount of space, but requires more code and more time for the length
computation. An explicit length field costs one more word per string, but
makes the length computation take constant time.

A classic example of a string optimization problem is finding the length that
would result from the concatenation of two strings, a and b. In alanguage with
string operators, this might be written as Tength(a+b), where + signifies
concatenation. This expression has two obvious implementations: construct
the concatenated string and compute its length (strien(strcat(a,b)) inc),
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and sum the lengths of a and b (strlen(a)+strien(b) in ¢). The latter
solution, of course, is desired. With an explicit length field, the operation
can be optimized to use two 1oads and an add.

SECTION REVIEW

In principle, string operations are similar to operations on vectors. The
details of string representation and the complications introduced by
issues of alignment and a desire for efficiency can complicate the code
that the compiler must generate. Simple loops that copy one character
at a time are easy to generate, to understand, and to prove correct. More
complex loops that move multiple characters per iteration can be more
efficient; the cost of that efficiency is additional code to handle the end
cases. Many compilers simply fall back on a system supplied string-copy
routine, such as the Linux strcpy or memmove routines, for the complex
cases.

s

Review Questions

1. Write the ILOC code for the string assignment a <« b using word-
length loads and stores. (Use character-length loads and stores in a
post loop to clean up the end cases.) Assume that a and b are word
aligned and nonoverlapping.

2. How does your code change if a and b are character aligned rather
than word aligned? What complications would overlapping strings
introduce?

|

7.7 STRUCTURE REFERENCES

Most programming languages provide a mechanism to aggregate data
together into a structure. The c structure is typical; it aggregates individ-
ually named elements, often of different types. A list implementation, in c,
might, for example, use the following structure to create lists of integers:

struct node {
int value;
struct node *next;

s

struct node NILNode = {0, (struct nodex) 0};
struct node *NIL = &NILNode;
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Each node contains a single integer and a pointer to another node. The final
declarations creates a node, NILNode, and a pointer, NIL. They initialize
NILNode with value zero and an illegal next pointer, and set NIL to point
at NILNode. (Programs often use a designated NIL pointer to denote the end
of a list.) The introduction of structures and pointers creates two distinct
problems for the compiler: anonymous values and structure layout.

7.7.1 Understanding Structure Layouts

When the compiler emits code for structure references, it needs to know
both the starting address of the structure instance and the offset and length
of each structure element. To maintain these facts, the compiler can build a
separate table of structure layouts. This compile-time table must include the
textual name for each structure element, its offset within the structure, and
its source-language data type. For the list example on page 374, the compiler
might build the tables shown in Figure 7.12. Entries in the element table use
fully qualified names to avoid conflicts due to reuse of a name in several
distinct structures.

With this information, the compiler can easily generate code for structure
references. Returning to the list example, the compiler might translate the
reference pl ->next, for a pointer to node pl, into the following 1Loc
code:

loadl 4 = r1 // offset of next
10adAQ rp1,r1 = rp // value of pl->next

Structure Layout Table

Name Length 15t Element

node 8

Structure Element Table

Name Length Offset Type Next
node.value 4 0 int 0—:|
node.next 4 4 struct node * 3%

M FIGURE 7.12 Structure Tables for the List Example.
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Here, the compiler finds the offset of next by following the table from the
node entry in the structure table to the chain of entries for node in the ele-
ment table. Walking that chain, it finds the entry for node.next and its
offset, 4.

In laying out a structure and assigning offsets to its elements, the compiler
must obey the alignment rules of the target architecture. This may force it
to leave unused space in the structure. The compiler confronts this problem
when it lays out the structure declared on the left:

struct example { 0 4 8 12 16 20 24 28

int fee: ’ fee I I fie I foe I I fum ‘
double fie: Elements in Declaration Order
int foe; 0 4 8 12 16 16
double fum; ’ fie I fum I fee I foe ‘
}s Elements Ordered by Alignment

The top-right drawing shows the structure layout if the compiler is con-
strained to place the elements in declaration order. Because fie and fum
must be doubleword aligned, the compiler must insert padding after fee and
foe. If the compiler could order the elements in memory arbitrarily, it could
use the layout shown on the bottom left, which needs no padding. This is a
language-design issue: the language definition specifies whether or not the
layout of a structure is exposed to the user.

7.7.2 Arrays of Structures

Many programming languages allow the user to declare an array of struc-
tures. If the user is allowed to take the address of a structure-valued element
of an array, then the compiler must lay out the data in memory as multiple
copies of the structure layout. If the programmer cannot take the address
of a structure-valued element of an array, the compiler might lay out the
structure as if it were a structure composed of elements that are, themselves,
arrays. Depending on how the surrounding code accesses the data, these two
strategies may have strikingly different performance on a system with cache
memory.

To address an array of structures laid out as multiple copies of the
structure, the compiler uses the array-address polynomials described in
Section 7.5. The overall length of the structure, including any needed
padding, becomes the element size w in the address polynomial. The poly-
nomial generates the address of the start of the structure instance. To obtain
the value of a specific element, the element’s offset is added to the instance’s
address.
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If the compiler has laid out the structure with elements that are arrays, it
must compute the starting location of the element array using the offset-table
information and the array dimension. This address can then be used as the
starting point for an address calculation using the appropriate array-address
polynomial.

7.7.3 Unions and Runtime Tags

Many languages allow the programmer to create a structure with multi-
ple, data-dependent interpretations. In ¢, the union construct has this effect.
Pascal achieved the same effect with its variant records.

Unions and variants present one additional complication. To emit code for a
reference to an element of a union, the compiler must resolve the reference to
a specific offset. Because a union is built from multiple structure definitions,
the possibility exists that element names are not unique. The compiler must
resolve each reference to a unique offset and type in the runtime object.

This problem has a linguistic solution. The programming language can force
the programmer to make the reference unambiguous. Consider the ¢ decla-
rations shown in Figure 7.13. Panel a shows declarations for two kinds of
node, one that holds an integer value and another that holds a floating-point
value.

The code in panel b declares a union named one thatis eitherannl orann2. To
reference an integer value, the programmer specifies ul.inode.value. To
reference a floating-point va 1 ue, the programmer specifies ul . fnode.value.
The fully qualified name resolves any ambiguity.

struct nl { union one { union two {
int kind; struct nl inode; struct {
int value; struct n2 fnode; int kind;
1 } ul; int value;
struct n2 { ) inode;
int kind; struct {
float value; int kind;
}: float value;
} fnode;
} u2;
(a) Basic Structures (b) Union of Structures (c) Union of Implicit Structures

M FIGURE 7.13 Union Declarations in C.
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The code in panel c declares a union named two that has the same properties
as one. The declaration of two explicitly declares its internal structure. The
linguistic mechanism for disambiguating a reference to value, however, is
the same—the programmer specifies a fully qualified name.

As an alternative, some systems have relied on runtime discrimination. Here,
each variant in the union has a field that distinguishes it from all other
variants—a “tag.” (For example, the declaration of two, might initialize
kind to one for inode and to two for fnode.) The compiler can then emit
code to check the value of the tag field and ensure that each object is han-
dled correctly. In essence, it emits a case statement based on the tag’s value.
The language may require that the programmer define the tag field and its
values; alternatively, the compiler could generate and insert tags automati-
cally. In this latter case, the compiler has a strong motivation to perform type
checking and remove as many checks as possible.

7.7.4 Pointers and Anonymous Values

A c program creates an instance of a structure in one of two ways. It can
declare a structure instance, as with Ni1Node in the earlier example. Alter-
natively, the code can explicitly allocate a structure instance. For a variable
fee declared as a pointer to node, the allocation would look like:

fee = (struct node *) malloc(sizeof(node));

The only access to this new node is through the pointer fee. Thus, we think
of it as an anonymous value, since it has no permanent name.

Because the only name for an anonymous value is a pointer, the compiler
cannot easily determine if two pointer references specify the same memory
location. Consider the code fragment

1 pl = (node %) malloc(sizeof(node));
2 p2 = (node %) malloc(sizeof(node));
3 if (...

4 then p3 = pl;

5 else p3 = p2;

6 pl->value = ...;

7 p3->value = ...;

8 = pl->value;
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The first two lines create anonymous nodes. Line 6 writes through p1 while
line 7 writes through p3. Because of the if-then-else, p3 can refer to
either the node allocated in line 1 or in line 2. Finally, line 8 references
pl->value.

The use of pointers limits the compiler’s ability to keep values in registers.
Consider the sequence of assignments in lines 6 through 8. Line 8 reuses
either the value assigned in line 6 or the value assigned in line 7. As a
matter of efficiency, the compiler should avoid storing that value to mem-
ory and reloading it. However, the compiler cannot easily determine which
value line 8 uses. The answer to that question depends on the value of the
conditional expression in line 3.

While it may be possible to know the value of the conditional expression in
certain specific instances (for example, 1 > 2), it is undecidable in the general
case. Unless the compiler knows the value of the conditional expression,
it must emit conservative code for the three assignments. It must load the
value used in line 8 from memory, even though it recently had the value in a
register.

The uncertainty introduced by pointers prevents the compiler from keep-
ing values used in pointer-based references in registers. Anonymous objects
further complicate the problem because they introduce an unbounded set of
objects to track. As a result, statements that involve pointer-based references
are often less efficient than the corresponding computations on unambiguous
local values.

A similar effect occurs for code that makes intensive use of arrays. Unless
the compiler performs an in-depth analysis of the array subscripts, it may
not be able to determine whether two array references overlap. When the
compiler cannot distinguish between two references, such as al[i,j, k] and
ali,j,1], it must treat both references conservatively. The problem of dis-
ambiguating array references, while challenging, is easier than the problem
of disambiguating pointer references.

Analysis to disambiguate pointer references and array references is a

major source of potential improvement in program performance. For

pointer-intensive programs, the compiler may perform an interprocedu-

ral data-flow analysis aimed at discovering, for each pointer, the set of

objects to which it can point. For array-intensive programs, the com-

piler may use data-dependence analysis to understand the patterns of array  Data-dependence analysis is beyond the scope of
references. this book. See [352, 20, 270].
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SECTION REVIEW

To implement structures and arrays of structures, the compiler must
establish a layout for each structure and must have a formula to calculate
the offset of any structure element. In a language where the declarations
dictate the relative position of data elements, structure layout simply
requires the compiler to calculate offsets. If the language allows the
compiler to determine the relative position of the data elements, then
the layout problem is similar to data-area layout (see Section 7.2.2). The
address computation for a structure element is a simple application of
the schemes used for scalar variables (e.g. base + offset) and for array
elements.

Two features related to structures introduce complications. If the
language permits unions or variant structures, then input code must
specify the desired element in an unambiguous way. The typical solution
to this problem is the use of fully qualified names for structure elements
in a union. The second issue arises from runtime allocation of structures.
The use of pointers to hold addresses of dynamically allocated objects
introduces ambiguities that complicate the issue of which values can be
keptin registers.

[

Review Questions

1. When the compiler lays out a structure, it must ensure that each ele-
ment of the structure is aligned on the appropriate boundary. The
compiler may need to insert padding (blank space) between elements
to meet alignment restrictions. Write a set of "rules of thumb" that a
programmer could use to reduce the likelihood of compiler-inserted
padding.

2. If the compiler has the freedom to rearrange structures and arrays, it
can sometimes improve performance. What programming language
features inhibit the compiler’s ability to perform such rearrangement?

|

7.8 CONTROL-FLOW CONSTRUCTS

A basic block is just a maximal-length sequence of straight-line, unpred-
icated code. Any statement that does not affect control flow can appear
inside a block. Any control-flow transfer ends the block, as does a labelled
statement since it can be the target of a branch. As the compiler generates
code, it can build up basic blocks by simply aggregating consecutive, unla-
beled, non-control-flow operations. (We assume that a labelled statement is
not labelled gratuitously, that is, every labelled statement is the target of
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some branch.) The representation of a basic block need not be complex. For
example, if the compiler has an assembly-like representation held in a simple
linear array, then a block can be described by a pair, (first,last), that holds
the indices of the instruction that begins the block and the instruction that
ends the block. (If the block indices are stored in ascending numerical order,
an array of firsts will suffice.)

To tie a set of blocks together so that they form a procedure, the compiler
must insert code that implements the control-flow operations of the source
program. To capture the relationships among blocks, many compilers build
a control-flow graph (CFG, see Sections 5.2.2 and 8.6.1) and use it for anal-
ysis, optimization, and code generation. In the CFG, nodes represent basic
blocks and edges represent possible transfers of control between blocks.
Typically, the CFG is a derivative representation that contains references to a
more detailed representation of each block.

The code to implement control-flow constructs resides in the basic blocks—
at or near the end of each block. (In 1LOC, there is no fall-through case
on a branch, so every block ends with a branch or a jump. If the IR mod-
els delay slots, then the control-flow operation may not be the last operation
in the block.) While many different syntactic conventions have been used
to express control flow, the number of underlying concepts is small. This
section examines many of the control-flow constructs found in modern
programming languages.

7.8.1 Conditional Execution

Most programming languages provide some version of an if-then-else
construct. Given the source text

if expr
then statement;
else statementy

statements

the compiler must generate code that evaluates expr and branches to
statement| or statement, based on the value of expr. The 1LOC code that
implements the two statements must end with a jump to statement;. As
we saw in Section 7.4, the compiler has many options for implementing
if-then-else constructs.

The discussion in Section 7.4 focused on evaluating the controlling expres-
sion. It showed how the underlying instruction set influenced the strate-
gies for handling both the controlling expression and, in some cases, the
controlled statements.
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Programmers can place arbitrarily large code fragments inside the then and
else parts. The size of these code fragments has an impact on the com-
piler’s strategy for implementing the if-then-else construct. With trivial
then and else parts, as shown in Figure 7.9, the primary consideration for
the compiler is matching the expression evaluation to the underlying hard-
ware. As the then and e1se parts grow, the importance of efficient execution
inside the then and else parts begins to outweigh the cost of executing the
controlling expression.

For example, on a machine that supports predicated execution, using predi-
cates for large blocks in the then and e1se parts can waste execution cycles.
Since the processor must issue each predicated instruction to one of its func-
tional units, each operation with a false predicate has an opportunity cost—it
ties up an issue slot. With large blocks of code under both the then and
else parts, the cost of unexecuted instructions may outweigh the overhead
of using a conditional branch.

Figure 7.14 illustrates this tradeoff. It assumes that both the then and else
parts contain 10 independent ILOC operations and that the target machine can
issue two operations per cycle.

Figure 7.14a shows code that might be generated using predication; it
assumes that the value of the controlling expression is in r1. The code issues
two instructions per cycle. One of them executes in each cycle. All of the
then part’s operations are issued to Unit 1, while the then part’s opera-
tions are issued to Unit 2. The code avoids all branching. If each operation

Unit 1 Unit 2 Unit 1 Unit 2
comparison = | compare & branch
rp opy  E&ry opg Liz opp  opp
(rp opp  Grp  oppo op3 0Pg
(rp) opy &ryp opg3 0ps 0pg
(rP opg  &ry opig 0p7 OPg
(r) opsg =rp  oprs 0pg 0p10
(r)  opg =ry  opig jumpl — L3
(rp) opy  Erp oppy Lo
2 0P11 OP12
(r) opg  Gry opig 0p13  Op14
() opg  E&rp oppg oP15  OPlg
rp opyp  €rpY  opy op17  Op1g
OP19  0OP20
jumpl — Ly
L3: nop
(a) Using Predicates (b) Using Branches

M FIGURE 7.14 Predication versus Branching.
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BRANCH PREDICTION BY USERS

One urban compiler legend concerns branch prediction. FORTRAN has
an arithmetic if statement that takes one of three branches, based on
whether the controlling expression evaluates to a negative number, to
zero, or to a positive number. One early compiler allowed the user to sup-
ply a weight for each label that reflected the relative probability of taking
that branch. The compiler then used the weights to order the branches in
a way that minimized total expected delay from branching.

After the compiler had been in the field for a year, the story goes, a main-
tainer discovered that the branch weights were being used in the reverse
order, maximizing the expected delay. No one had complained. The story
is usually told as a fable about the value of programmers’ opinions about
the behavior of code they have written. (Of course, no one reported the
improvement, if any, from using the branch weights in the correct order.)

takes a single cycle, it takes 10 cycles to execute the controlled statements,
independent of which branch is taken.

Figure 7.14b shows code that might be generated using branches; it assumes
that control flows to L1 for the then part or to L, for the e1se part. Because
the instructions are independent, the code issues two instructions per cycle.
Following the then path takes five cycles to execute the operations for the
taken path, plus the cost of the terminal jump. The cost for the else part is
identical.

The predicated version avoids the initial branch required in the unpredicated
code (to either L1 or Ly in the figure), as well as the terminal jumps (to
L3). The branching version incurs the overhead of a branch and a jump, but
may execute faster. Each path contains a conditional branch, five cycles of
operations, and the terminal jump. (Some of the operations may be used to
fill delay slots on jumps.) The difference lies in the effective issue rate—
the branching version issues roughly half the instructions of the predicated
version. As the code fragments in the then and else parts grow larger, this
difference becomes larger.

Choosing between branching and predication to implement an if-then-
else requires some care. Several issues should be considered, as follows:

1. Expected frequency of execution If one side of the conditional executes
significantly more often, techniques that speed execution of that path
may produce faster code. This bias may take the form of predicting a
branch, of executing some instructions speculatively, or
of reordering the logic.



384 (HAPTER 7 Code Shape

2. Uneven amounts of code If one path through the construct contains
many more instructions than the other, this may weigh against
predication or for a combination of predication and branching.

3. Control flow inside the construct If either path contains nontrivial
control flow, such as an if-then-else, loop, case statement,
or call, then predication may be a poor choice. In particular, nested i f
constructs create complex predicates and lower the fraction of issued
operations that are useful.

To make the best decision, the compiler must consider all these factors, as
well as the surrounding context. These factors may be difficult to assess early
in compilation; for example, optimization may change them in significant
ways.

7.8.2 Loops and Iteration

Most programming languages include loop constructs to perform iteration.
The first FORTRAN compiler introduced the do loop to perform iteration.
Today, loops are found in many forms. For the most part, they have a similar
structure.

Consider the ¢ for loop as an example. Figure 7.15 shows how the com-
piler might lay out the code. The for loop has three controlling expressions:
e1, which provides for initialization; e,, which evaluates to a boolean and
governs execution of the loop; and ez, which executes at the end of each iter-
ation and, potentially, updates the values used in e,. We will use this figure
as the basic schema to explain the implementation of several kinds of loops.

1 Step Purpose
1 Evaluate e
e 2 If (=€)
For (ers ez: e3) { Then goto 5
loop body
} 3 Loop Body
4 Evaluate e;
If (6’2)
Then goto 3
5 Code After Loop
(a) Example Code for Loop (b) Schema for Implementing Loop

M FIGURE 7.15 General Schema for Layout of a for Loop.
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If the loop body consists of a single basic block—that is, it contains no
other control flow—then the loop that results from this schema has an initial
branch plus one branch per iteration. The compiler might hide the latency
of this branch in one of two ways. If the architecture allows the compiler to
predict whether or not the branch is taken, the compiler should predict the
branch in step 4 as being taken (to start the next iteration). If the architecture
allows the compiler to move instructions into the delay slot(s) of the branch,
the compiler should attempt to fill the delay slot(s) with instruction(s) from
the loop body.

For Loops

To map a for loop into code, the compiler follows the general schema from
Figure 7.15. To make this concrete, consider the following example. Steps 1
and 2 produce a single basic block, as shown in the following code:

loadl 1 = rj // Step 1
loadI 100 = ri // Step 2
for (i=1; i<=100; i++) { cmp-GT ri.ry = 2
cbr ro — Lo, I3
loop body
} L1: loop body // Step 3
addI ri.l = rj // Step 4
next statement cmpLE ri.r] = r3
cbr ra — L1, Ly
Lo: next statement // Step b

The code produced in steps 1, 2, and 4 is straightforward. If the loop body
(step 3) either consists of a single basic block or it ends with a single basic
block, then the compiler can optimize the update and test produced in step 4
with the loop body. This may lead to improvements in the code—for exam-
ple, the instruction scheduler might use operations from the end of step 3 to
fill delay slots in the branch from step 4.

The compiler can also shape the loop so that it has only one copy of the test—
the one in step 2. In this form, step 4 evaluates e3 and then jumps to step 2.
The compiler would replace cmp_LE, cbr sequence at the end of the loop
with a jumpI. This form of the loop is one operation smaller than the two-
test form. However, it creates a two-block loop for even the simplest loops,
and it lengthens the path through the loop by at least one operation. When
code size is a serious consideration, consistent use of this more compact loop
form might be worthwhile. As long as the loop-ending jump is an immediate
jump, the hardware can take steps to minimize any disruption that it might
cause.

The canonical loop shape from Figure 7.15 also sets the stage for later opti-
mization. For example, if e; and e, contain only known constants, as in



386 C(HAPTER 7 Code Shape

the example, the compiler can fold the value from step 1 into the test in
step 2 and either eliminate the compare and branch (if control enters the
loop) or eliminate the loop body (if control never enters the loop). In the
single-test loop, the compiler cannot do this. Instead, the compiler finds two
paths leading to the test—one from step 1 and one from step 4. The value
used in the test, ry, has a varying value along the edge from step 4, so the
test’s outcome is not predictable.

FORTRAN’s do Loop

In FORTRAN, the iterative loop is a do loop. It resembles the ¢ for loop, but
has a more restricted form.

loadl 1 = rj /] <1
loadl 1 = Ij // Step 1
=1 loadI 100 = r // Step 2
do 10 i = 1, 100 cmp-GT ri.ry = rz
cbr ro - Lo,
loop body
=2 L1: loop body // Step 3
: addl  rj,2 = rj /] J<j+2
10 continue addl  ri,1 = rj // Step 4
next statement cmp.LE ri,rp = r3
chr ra — L1, Ly
Lo : next statement // Step 5

The comments map portions of the 1Loc code back to the schema in
Figure 7.15.

The definition of FORTRAN, like that of many languages, has some interesting
quirks. One such peculiarity relates to do loops and their index variables. The
number of iterations of a loop is fixed before execution enters the loop. If
the program changes the index variable’s value, that change does not affect
the number of iterations that execute. To ensure the correct behavior, the
compiler may need to generate a hidden induction variable, called a shadow
index variable, to control the iteration.

While Loops

A while loop can also be implemented with the loop schema in Figure 7.15.
Unlike the ¢ for loop or the FORTRAN do loop, a while loop has no
initialization. Thus, the code is even more compact.

cmp_LT ryx,ry = rg // Step 2

while (x < y) { chr ri — L1, Ly
loop body L1: loop body // Step 3
} cmp-LT rx,ry = ro // Step 4

next statement cbr r2 - L. Lo

Lo: next statement // Step 5



Replicating the test in step 4 creates the possibility of a loop with a single
basic block. The same benefits that accrue to a for loop from this structure
also occur for a while loop.

Until Loops

An until loop iterates as long as the controlling expression is false. It
checks the controlling expression after each iteration. Thus, it always enters
the loop and performs at least one iteration. This produces a particularly
simple loop structure, since it avoids steps 1 and 2 in the schema:

{ L1: loop body // Step 3
loop body cmp_LT rx,ry = rp  // Step 4

}bountil (x < y) cbr ro — Lo, Ly
Lo : next statement // Step 5

next statement

C does not have an unti1 loop. Its do construct is similar to an unti1 loop,
except that the sense of the condition is reversed. It iterates as long as the
condition evaluates to true, where the unti1 iterates as long as the condition
is false.

Expressing Iteration as Tail Recursion

In Lisp-like languages, iteration is often implemented (by programmers)
using a stylized form of recursion. If the last action executed by a function
is a call, that call is known as a tail call. For example, to find the last ele-
ment of a list in Scheme, the programmer might write the following simple
function:

(define (last alon)
(cond
((empty? alon) empty)
((empty? (cdr alon)) (car alon))
(else (lTast (cdr alon)))))

Compilers often subject tail calls to special treatment, because the com-
piler can generate particularly efficient call for them (see Section 10.4.1).
Tail recursion can be used to achieve the same effects as iteration, as in the
following Scheme code:

(define (count alon ct)
(cond
((empty? alon) ct)

(else (count (cdr alon) (+ ct 1)))))

(define (len alon)
(count alon 0))
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Tail call

A procedure call that occurs as the last action
in some procedure is termed a tail call. A
self-recursive tail call is termed a tail recursion.
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Invoking 1en on a list returns the list’s length. 1en relies on count, which
implements a simple counter using tail calls.

Break Statements

Several languages implement variations on a break or exit statement. The
break statement is a structured way to exit a control-flow construct. In a
loop, break transfers control to the first statement following the loop. For
nested loops, a break typically exits the innermost loop. Some languages,
such as Ada and Java, allow an optional label on a break statement. This
causes the break statement to exit from the enclosing construct specified
by that label. In a nested loop, a labelled break allows the program to exit
several loops at once. C also uses break in its switch statement, to transfer
control to the statement that follows the switch statement.

These actions have simple implementations. Each loop and each case state-
ment should end with a label for the statement that follows it. A break would
be implemented as an immediate jump to that label. Some languages include
a skip or continue statement that jumps to the next iteration of a loop. This
construct can be implemented as an immediate jump to the code that reevalu-
ates the controlling expression and tests its value. Alternatively, the compiler
can simply insert a copy of the evaluation, test, and branch at the point where
the skip occurs.

7.8.3 Case Statements

Many programming languages include some variant of a case statement.
FORTRAN has its computed goto. Algol-W introduced the case statement
in its modern form. BCPL and ¢ have a switch construct, while PL/1 has a
generalized construct that maps well onto a nested set of if-then-else
statements. As the introduction to this chapter hinted, implementing a case
statement efficiently is complex.

Consider the implementation of C’s switch statement. The basic strategy
is straightforward: (1) evaluate the controlling expression; (2) branch to the
selected case; and (3) execute the code for that case. Steps 1 and 3 are well
understood, as they follow from discussions elsewhere in this chapter. In c,
the individual cases usually end with a break statement that exits the switch
statement.

The complex part of case-statement implementation lies in choosing an
efficient method to locate the designated case. Because the desired case is
not known until runtime, the compiler must emit code that will use the value
of the controlling expression to locate the corresponding case. No single
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t1 < e
switch (e1) | if (t; = 0)
case 0: blockg; then blockg
break; else if (t1 = 1)
case 1: blocky: then block;
break; else if (t1 = 2)
case 3: blocks; then blocky
break; else if (t1 = 3)
default: blockq; then blocks
break; else blockg
}
(a) Switch Statement (b) Implemented as a Linear Search

M FIGURE 7.16 (ase Statement Implemented with Linear Search.

method works well for all case statements. Many compilers have provision
for several different search schemes and choose between them based on the
specific details of the set of cases.

This section examines three strategies: a linear search, a binary search, and
a computed address. Each strategy is appropriate under different circum-
stances.

Linear Search

The simplest way to locate the appropriate case is to treat the case state-
ment as the specification for a nested set of if-then-else statements. For
example, the switch statement shown in Figure 7.16a can be translated into
the nest of statements shown in Figure 7.16b. This translation preserves the
meaning of the switch statement, but makes the cost of reaching individ-
ual cases dependent on the order in which they are written. With a linear
search strategy, the compiler should attempt to order the cases by estimated
execution frequency. Still, when the number of cases is small—say three or
four—this strategy can be efficient.

Directly Computing the Address

If the case labels form a compact set, the compiler can do better than binary

search. Consider the switch statement shown in Figure 7.17a. It has case

labels from zero to nine, plus a default case. For this code, the compiler can Jump table

build a compact vector, or jump table, that contains the block labels, and 3 yector of labels used to transfer control based
find the appropriate label by index into the table. The jump table is shown  onacomputedindexinto the table
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switch (ep) |

case 0: blocky Label
break; LBg
case 1: block LB1 t] < e
break; LB if (0> ty or t; > 9)
case 2: blocky LB3 then jump to LBy
break; LBy else
LBs t, <@Table + t1 x 4
case 9:  blockg LBg t3 <« memory(ty)
break; LB7 jump to ti
default: blocky LBg
break; LBg
}
(a) Switch Statement (b) Jump Table (c) Code for Address Computation

M FIGURE 7.17 (ase Statement Implemented with Direct Address Computation.

in Figure 7.17b, while the code to compute the correct case’s label is shown
in Figure 7.17c. The search code assumes that the jump table is stored at
@Tab1e and that each label occupies four bytes.

For a dense label set, this scheme generates compact and efficient code. The
cost is small and constant—a brief calculation, a memory reference, and a
jump. If a few holes exist in the label set, the compiler can fill those slots
with the label for the default case. If no default case exists, the appropriate
action depends on the language. In c, for example, the code should branch
to the first statement after the switch, so the compiler can place that label
in each hole in the table. If the language treats a missing case as an error,
as PL/1 did, the compiler can fill holes in the jump table with the label of a
block that throws the appropriate runtime error.

Binary Search

As the number of cases rises, the efficiency of linear search becomes a
problem. In a similar way, as the label set becomes less dense and less
compact, the size of the jump table can become a problem for the direct
address computation. The classic solutions that arise in building an efficient
search apply in this situation. If the compiler can impose an order on the case
labels, it can use binary search to obtain a logarithmic search rather than a
linear one.

The idea is simple. The compiler builds a compact ordered table of case
labels, along with their corresponding branch labels. It uses binary search to
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tl <~ €]
e Value Label down < 0 // lower bound
break;
0 L8o up <« 10 // upper bound + 1
case 15: blocks 15 LBys
break; 23 LBy3 while (down + 1 < up) {
case 23: blockyz 37 LB37 m;d((jl,:(_ Eupd;d?wn)g)z
break; 41 LBsp 1 alue [mi el <t
50 LBsg then down <« middle
else up < middle
case 99: blockgy 68 LBgs p
break; 72 | LBy }
default: blocky 83 | LBgs if (Value [downl = t;
break; 99 | LBgg then jump to Label[down]

}

(a) Switch Statement (b) Search Table

M FIGURE 7.18 (ase Statement Implemented with Binary Search.

discover a matching case label, or the absence of a match. Finally, it either
branches to the corresponding label or to the default case.

Figure 7.18a shows our example case statement, rewritten with a different
set of labels. For the figure, we will assume case labels of 0, 15, 23, 37, 41,
50, 68, 72, 83, and 99, as well as a default case. The labels could, of course,
cover a much larger range. For such a case statement, the compiler might
build a search table such as the one shown in Figure 7.18b, and generate a
binary search, as in Figure 7.18c, to locate the desired case. If fall-through
behavior is allowed, as in ¢, the compiler must ensure that the blocks appear
in memory in their original order.

In a binary search or direct address computation, the compiler writer should
ensure that the set of potential targets of the jump are visible in the IR, using
a construct such as the 1Loc tb1 pseudo-operation (see Appendix A.4.2).
Such hints both simplify later analysis and make its results more precise.

SECTION REVIEW

Programming languages include a variety of features to implement
control flow. The compiler needs a schema for each control-flow
construct in the source languages that it accepts. In some cases, such as a
loop, one approach serves for a variety of different constructs. In others,
such as a case statement, the compiler should choose an implementation
strategy based on the specific properties of the code at hand.

else jump to LBy

(c) Code for Binary Search

The exact form of the search loop might vary.

For example, the code in the figure does not
short circuit the case when it finds the label early.
Empirical testing of several variants written in
the target machine’s assembly code is needed to
find the best choices.
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[
Review Questions
do 10 1 =1, 100 1. Write the ILOC code for the FORTRAN loop shown in the margin. Recall
loop body that the loop body must execute 100 iterations, even though the loop
=142 modifies the value of 1.
10 continue 2. Consider the tradeoff between implementing a C switch statement

with a direct address computation and with a binary search. At what
point should the compiler switch from direct address computation to
a binary search? What properties of the actual code should play a role
in that determination?

|

7.9 PROCEDURE CALLS

The implementation of procedure calls is, for the most part, straightforward.
As shown in Figure 7.19, a procedure call consists of a precall sequence
and a postreturn sequence in the caller, and a prologue and an epilogue
in the callee. A single procedure can contain multiple call sites, each with
its own precall and postreturn sequences. In most languages, a procedure
has one entry point, so it has one prologue sequence and one epilogue
sequence. (Some languages allow multiple entry points, each of which has
its own prologue sequence.) Many of the details involved in these sequences
are described in Section 6.5. This section focuses on issues that affect the
compiler’s ability to generate efficient, compact, and consistent code for
procedure calls.

Procedure p

Prologue
Procedure q
O">\\ Prologue
Precall
Postreturn @@@
% .

Epilogue

Epilogue

M FIGURE 7.19 A Standard Procedure Linkage.
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As a general rule, moving operations from the precall and postreturn
sequences into the prologue and epilogue sequences should reduce the
overall size of the final code. If the call from p to ¢ shown in Figure 7.19 is
the only call to ¢ in the entire program, then moving an operation from the
precall sequence in p to the prologue in g (or from the postreturn sequence
in p to the epilogue in g) has no impact on code size. If, however, other call
sites invoke ¢ and the compiler moves an operation from the caller to the
callee (at all the call sites), it should reduce the overall code size by replac-
ing multiple copies of an operation with a single one. As the number of call
sites that invoke a given procedure rises, the savings grow. We assume that
most procedures are called from several locations; if not, both the program-
mer and the compiler should consider including the procedure inline at the
point of its only invocation.

From the code-shape perspective, procedure calls are similar in Algol-like
languages and object-oriented languages. The major difference between
them lies in the technique used to name the callee (see Section 6.3.4). In
addition, a call in an object-oriented language typically adds an implicit
actual parameter, that is, the receiver’s object record.

7.9.1 Evaluating Actual Parameters

When it builds the precall sequence, the compiler must emit code to evaluate
the actual parameters to the call. The compiler treats each actual parameter
as an expression. For a call-by-value parameter, the precall sequence eval-
uates the expression and stores its value in a location designated for that
parameter—either in a register or in the callee’s AR. For a call-by-reference
parameter, the precall sequence evaluates the parameter to an address and
stores the address in a location designated for that parameter. If a call-by-
reference parameter has no storage location, then the compiler may need to
allocate space to hold the parameter’s value so that it has an address to pass
to the callee.

If the source language specifies an order of evaluation for the actual param-
eters, the compiler must, of course, follow that order. Otherwise, it should
use a consistent order—either left to right or right to left. The evaluation
order matters for parameters that might have side effects. For example, a
program that used two routines push and pop to manipulate a stack would
produce different results for the sequence subtract(pop(), pop()) under
left-to-right and right-to-left evaluation.

Procedures typically have several implicit arguments. These include the
procedure’s ARP, the caller’s ARP, the return address, and any information
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needed to establish addressability. Object-oriented languages pass the
receiver as an implicit parameter. Some of these arguments are passed in
registers while others usually reside in memory. Many architectures have an
operation like

jsr label] = rj

that transfers control to 1abel; and places the address of the operation that
follows the jsr into rjy.

Procedures passed as actual parameters may require special treatment. If p
calls ¢, passing procedure r as an argument, p must pass to ¢ more informa-
tion than r’s starting address. In particular, if the compiled code uses access
links to find nonlocal variables, the callee needs r’s lexical level so that a
subsequent call to r can find the correct access link for r’s level. The com-
piler can construct an (address,level) pair and pass it (or its address) in place
of the procedure-valued parameter. When the compiler constructs the precall
sequence for a procedure-valued parameter, it must insert the extra code to
fetch the lexical level and adjust the access link accordingly.

7.9.2 Saving and Restoring Registers

Under any calling convention, one or both of the caller and the callee must
preserve register values. Often, linkage conventions use a combination of
caller-saves and callee-saves registers. As both the cost of memory opera-
tions and the number of registers have risen, the cost of saving and restoring
registers at call sites has increased, to the point where it merits careful
attention.

In choosing a strategy to save and restore registers, the compiler writer must
consider both efficiency and code size. Some processor features impact this
choice. Features that spill a portion of the register set can reduce code size.
Examples of such features include register windows on the SPARC machines,
the multiword load and store operations on the Power architectures, and the
high-level call operation on the vaXx. Each offers the compiler a compact
way to save and restore some portion of the register set.

While larger register sets can increase the number of registers that the code
saves and restores, in general, using these additional registers improves the
speed of the resulting code. With fewer registers, the compiler would be
forced to generate loads and stores throughout the code; with more registers,
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many of these spills occur only at a call site. (The larger register set should
reduce the total number of spills in the code.) The concentration of saves
and restores at call sites presents the compiler with opportunities to han-
dle them in better ways than it might if they were spread across an entire
procedure.

m  Using multi-register memory operations When saving and restoring
adjacent registers, the compiler can use a multiregister memory
operation. Many 1sas support doubleword and quadword load and store
operations. Using these operations can reduce code size; it may also
improve execution speed. Generalized multiregister memory operations
can have the same effect.

m  Using a library routine As the number of registers grows, the precall
and postreturn sequences both grow. The compiler writer can replace
the sequence of individual memory operations with a call to a
compiler-supplied save or restore routine. Done across all calls, this
strategy can produce a significant savings in code size. Since the save
and restore routines are known only to the compiler, they can use
minimal call sequence to keep the runtime cost low.

The save and restore routines can take an argument that specifies which
registers must be preserved. It may be worthwhile to generate optimized
versions for common cases, such as preserving all the caller-saves or
callee-saves registers.

m  Combining responsibilities To further reduce overhead, the compiler
might combine the work for caller-saves and callee-saves registers. In
this scheme, the caller passes a value to the callee that specifies which
registers it must save. The callee adds the registers it must save to the
value and calls the appropriate compiler-provided save routine. The
epilogue passes the same value to the restore routine so that it can
reload the needed registers. This approach limits the overhead to
one call to save registers and one to restore them. It separates
responsibility (caller saves versus callee saves) from the cost to
call the routine.

The compiler writer must pay close attention to the implications of the vari-
ous options on code size and runtime speed. The code should use the fastest
operations for saves and restores. This requires a close look at the costs of
single-register and multiregister operations on the target architecture. Using
library routines to perform saves and restores can save space; careful imple-
mentation of those library routines may mitigate the added cost of invoking
them.
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SECTION REVIEW

The code generated for procedure calls is split between the caller

and the callee, and between the four pieces of the linkage sequence
(prologue, epilogue, precall, and postreturn). The compiler coordinates
the code in these multiple locations to implement the linkage conven-
tion, as discussed in Chapter 6. Language rules and parameter binding
conventions dictate the order of evaluation and the style of evaluation
for actual parameters. System-wide conventions determine responsibility
for saving and restoring registers.

Compiler writers pay particular attention to the implementation of
procedure calls because the opportunities are difficult for general
optimization techniques (see Chapters 8 and 10) to discover. The
many-to-one nature of the caller-callee relationship complicates analysis
and transformation, as does the distributed nature of the cooperating
code sequences. Equally important, minor deviations from the defined
linkage convention can cause incompatibilities in code compiled with
different compilers.

|

Review Questions

1. When a procedure saves registers, either callee-saves registers in its
prologue or caller-saves registers in a precall sequence, where should
it save those registers? Are all of the registers saved for some call
stored in the same AR?

2. In some situations, the compiler must create a storage location to hold
the value of a call-by-reference parameter. What kinds of parameters
may not have their own storage locations? What actions might be
required in the precall and postcall sequences to handle these actual
parameters correctly?

7.10  SUMMARY AND PERSPECTIVE

One of the more subtle tasks that confronts the compiler writer is selecting
a pattern of target-machine operations to implement each source-language
construct. Multiple implementation strategies are possible for almost any
source-language statement. The specific choices made at design time have a
strong impact on the code that the compiler generates.

In a compiler that is not intended for production use—a debugging compiler
or a student compiler—the compiler writer might select easy to imple-
ment translations for each strategy that produce simple, compact code. In
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an optimizing compiler, the compiler writer should focus on translations
that expose as much information as possible to the later phases of the
compiler—low-level optimization, instruction scheduling, and register allo-
cation. These two different perspectives lead to different shapes for loops,
to different disciplines for naming temporary variables, and, possibly, to
different evaluation orders for expressions.

The classic example of this distinction is the case statement. In a debug-
ging compiler, the implementation as a cascaded series of if-then-else
constructs is fine. In an optimizing compiler, the inefficiency of the myriad
tests and branches makes a more complex implementation scheme worth-
while. The effort to improve the case statement must be made when the
IR is generated; few, if any, optimizers will convert a cascaded series of
conditionals into a binary search or a direct jump table.

B CHAPTER NOTES

The material contained in this chapter falls, roughly, into two categories:
generating code for expressions and handling control-flow constructs.
Expression evaluation is well explored in the literature. Discussions of how
to handle control flow are rarer; much of the material on control flow in this
chapter derives from folklore, experience, and careful reading of the output
of compilers.

Floyd presented the first multipass algorithm for generating code from
expression trees [150]. He points out that both redundancy elimination and
algebraic reassociation have the potential to improve the results of his algo-
rithm. Sethi and Ullman [311] proposed a two-pass algorithm that is optimal
for a simple machine model; Proebsting and Fischer extended this work to
account for small memory latencies [289]. Aho and Johnson [5] introduced
dynamic programming to find least-cost implementations.

The predominance of array calculations in scientific programs led to work
on array-addressing expressions and to optimizations (like strength reduc-
tion, Section 10.7.2) that improve them. The computations described in
Section 7.5.3 follow Scarborough and Kolsky [307].

Harrison used string manipulation as a motivating example for the pervasive
use of inline substitution and specialization [182]. The example mentioned
at the end of Section 7.6.4 comes from that paper.

Mueller and Whalley describe the impact of different loop shapes on per-
formance [271]. Bernstein provides a detailed discussion of the options that
arise in generating code for case statements [40]. Calling conventions are
best described in processor-specific and operating-system-specific manuals.
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Optimization of range checks has a long history. The pL/.8 compiler insisted
on checking every reference; optimization lowered the overhead [257]. More
recently, Gupta and others have extended these ideas to increase the set of
checks that can be moved to compile time [173].

B EXERCISES

Section 7.2 1. Memory layout affects the addresses assigned to variables. Assume
that character variables have no alignment restriction, short integer
variables must be aligned to halfword (2 byte) boundaries, integer
variables must be aligned to word (4 byte) boundaries, and long
integer variables must be aligned to doubleword (8 byte) boundaries.
Consider the following set of declarations:

char a;
long int b;
int c;
short int d;
long int e;
char f;

Draw a memory map for these variables:
a. Assuming that the compiler cannot reorder the variables
b. Assuming the compiler can reorder the variables to save space

2. Asdemonstrated in the previous question, the compiler needs an
algorithm to lay out memory locations within a data area. Assume that
the algorithm receives as input a list of variables, their lengths, and
their alignment restrictions, such as

(a,4,4), (b, 1,3), (c,8,8), (d,4,4), (e, 1,4), (,8,16), (9,1, 1).

The algorithm should produce, as output, a list of variables and their
offsets in the data area. The goal of the algorithm is to minimize
unused, or wasted, space.

a. Write down an algorithm to lay out a data area with minimal
wasted space.

b. Apply your algorithm to the example list above and two other lists
that you design to demonstrate the problems that can arise in
storage layout.

c. What is the complexity of your algorithm?

3. For each of the following types of variable, state where in memory the
compiler might allocate the space for such a variable. Possible
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answers include registers, activation records, static data areas (with
different visibilities), and the runtime heap.

a. A variable local to a procedure

b. A global variable

c. A dynamically allocated global variable

d. A formal parameter

e. A compiler-generated temporary variable

4. Use the treewalk code-generation algorithm from Section 7.3 to Section 7.3
generate naive code for the following expression tree. Assume an
unlimited set of registers.

N
‘k/ \‘k
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b b 4 *
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5. Find the minimum number of registers required to evaluate the
following trees using the 1ILOC instruction set. For each nonleaf node,
indicate which of its children must be evaluated first in order to
achieve this minimum number of registers.
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